首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Molybdenum isotope fractionation by cyanobacterial assimilation during nitrate utilization and N2fixation
【2h】

Molybdenum isotope fractionation by cyanobacterial assimilation during nitrate utilization and N2fixation

机译:利用硝酸盐和固氮过程中的蓝细菌同化作用分离钼同位素

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We measured the δ98Mo of cells and media from molybdenum (Mo) assimilation experiments with the freshwater cyanobacterium Anabaena variabilis, grown with nitrate as a nitrogen (N) source or fixing atmospheric N2. This organism uses a Mo-based nitrate reductase during nitrate utilization and a Mo-based dinitrogenase during N2 fixation under culture conditions here. We also demonstrate that it has a high-affinity Mo uptake system (ModABC) similar to other cyanobacteria, including marine N2-fixing strains. Anabaena variabilis preferentially assimilated light isotopes of Mo in all experiments, resulting in fractionations of −0.2‰ to −1.0‰ ± 0.2‰ between cells and media (εcells–media), extending the range of biological Mo fractionations previously reported. The fractionations were internally consistent within experiments, but varied with the N source utilized and for different growth phases sampled. During growth on nitrate, A. variabilis consistently produced fractionations of −0.3 ± 0.1‰ (mean ± standard deviation between experiments). When fixing N2, A. variabilis produced fractionations of −0.9 ± 0.1‰ during exponential growth, and −0.5 ± 0.1‰ during stationary phase. This pattern is inconsistent with a simple kinetic isotope effect associated with Mo transport, because Mo is likely transported through the ModABC uptake system under all conditions studied. We present a reaction network model for Mo isotope fractionation that demonstrates how Mo transport and storage, coordination changes during enzymatic incorporation, and the distribution of Mo inside the cell could all contribute to the total biological fractionations. Additionally, we discuss the potential importance of biologically incorporated Mo to organic matter-bound Mo in marine sediments.
机译:我们用淡水蓝藻鱼腥藻(Anabaena variabilis),硝酸盐作为氮(N)源或固定了大气中的N2生长,测量了来自钼(Mo)同化实验的细胞和培养基的δ 98 Mo。此生物在此处的培养条件下,在硝酸盐利用过程中使用基于Mo的硝酸盐还原酶,在N2固定过程中使用基于Mo的二氮化酶。我们还证明了它具有与其他蓝细菌(包括海洋N2固定菌株)相似的高亲和力Mo吸收系统(ModABC)。鱼腥藻在所有实验中均优先吸收Mo的轻同位素,导致细胞和培养基(ε细胞–培养基)之间的分离度为-0.2‰至-1.0‰±0.2‰,从而扩展了先前报道的生物学Mo分离范围。在实验中,分级分离在内部是一致的,但是随着所利用的氮源和取样的不同生长阶段而变化。在硝酸盐上生长期间,曲霉一致产生-0.3±0.1‰的馏分(实验之间的平均值±标准差)。当固定N2时,变异曲霉在指数生长期产生的分馏为-0.9±0.1‰,而在固定生长期产生的分馏为-0.5±0.1‰。这种模式与与Mo运移相关的简单动力学同位素效应不一致,因为在所有研究的条件下,Mo都可能通过ModABC吸收系统运移。我们提出了一个用于Mo同位素分级分离的反应网络模型,该模型演示了Mo的运输和存储,酶结合过程中的配位变化以及细胞内部Mo的分布均可能对总的生物分离产生影响。此外,我们讨论了生物掺入Mo对海洋沉积物中有机物结合的Mo的潜在重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号