首页> 美国卫生研究院文献>other >Acquisition of Epithelial-Mesenchymal Transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of Notch signaling pathway
【2h】

Acquisition of Epithelial-Mesenchymal Transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of Notch signaling pathway

机译:耐吉西他滨胰腺癌细胞的上皮 - 间充质转换表型采集与Notch信号传导途径的激活链接

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite rapid advances in many fronts, pancreatic cancer (PC) remains one of the most difficult human malignancies to treat, in part due to de novo and acquired chemo- and radio-resistance. Gemcitabine alone or in combination with other conventional therapeutics is the standard of care for the treatment of advanced PC without any significant improvement in the overall survival of patients diagnosed with this deadly disease. Previous studies have shown that PC cells that are gemcitabine-resistant (GR) acquired epithelial-mesenchymal transition (EMT) phenotype which is reminiscent of “cancer stem-like cells (CSC)”; however the molecular mechanism that led to EMT phenotype has not been fully investigated. The present study demonstrates that Notch-2 and its ligand Jagged-1 are highly up-regulated in GR cells, which is consistent with the role of Notch signaling pathway in the acquisition of EMT and CSC phenotype. We also found that the down-regulation of Notch signaling was associated with decreased invasive behavior of GR cells. Moreover, down-regulation of Notch signaling by siRNA approach led to partial reversal of the EMT phenotype, resulting in the mesenchymal-epithelial transition (MET), which was associated with decreased expression of vimentin, ZEB1, Slug, Snail and NF-κB. These results provide molecular evidence showing that the activation of Notch signaling is mechanistically linked with chemo-resistance phenotype (EMT phenotype) of PC cells, suggesting that the inactivation of Notch signaling by novel strategies could be a potential targeted therapeutic approach for overcoming chemo-resistance toward the prevention of tumor progression and/or treatment of metastatic PC.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号