首页> 美国卫生研究院文献>Philosophical transactions. Series A Mathematical physical and engineering sciences >When crust comes of age: on the chemical evolution of Archaean felsic continental crust by crustal drip tectonics
【2h】

When crust comes of age: on the chemical evolution of Archaean felsic continental crust by crustal drip tectonics

机译:当地壳成熟时:在古生代的化学演化过程中地壳滴漏构造使长英质大陆壳

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The secular evolution of the Earth's crust is marked by a profound change in average crustal chemistry between 3.2 and 2.5 Ga. A key marker for this change is the transition from Archaean sodic granitoid intrusions of the tonalite–trondhjemite–granodiorite (TTG) series to potassic (K) granitic suites, akin (but not identical) to I-type granites that today are associated with subduction zones. It remains poorly constrained as to how and why this change was initiated and if it holds clues about the geodynamic transition from a pre-plate tectonic mode, often referred to as stagnant lid, to mobile plate tectonics. Here, we combine a series of proposed mechanisms for Archaean crustal geodynamics in a single model to explain the observed change in granitoid chemistry. Numeric modelling indicates that upper mantle convection drives crustal flow and subsidence, leading to profound diversity in lithospheric thickness with thin versus thick proto-plates. When convecting asthenospheric mantle interacts with lower lithosphere, scattered crustal drips are created. Under increasing P-T conditions, partial melting of hydrated meta-basalt within these drips produces felsic melts that intrude the overlying crust to form TTG. Dome structures, in which these melts can be preserved, are a positive diapiric expression of these negative drips. Transitional TTG with elevated K mark a second evolutionary stage, and are blends of subsided and remelted older TTG forming K-rich melts and new TTG melts. Ascending TTG-derived melts from asymmetric drips interact with the asthenospheric mantle to form hot, high-Mg sanukitoid. These melts are small in volume, predominantly underplated, and their heat triggered melting of lower crustal successions to form higher-K granites. Importantly, this evolution operates as a disseminated process in space and time over hundreds of millions of years (greater than 200 Ma) in all cratons. This focused ageing of the crust implies that compiled geochemical data can only broadly reflect geodynamic changes on a global or even craton-wide scale. The observed change in crustal chemistry does mark the lead up to but not the initiation of modern-style subduction.This article is part of a discussion meeting issue ‘Earth dynamics and the development of plate tectonics’.
机译:地球地壳的长期演化特征是平均地壳化学在3.2和2.5 Ga之间发生了深刻的变化,这一变化的关键标志是从方钠石-长白云母-碎屑闪长岩(TTG)系列的古生苏打花岗岩侵入体转变为钾质体。 (K)花岗岩套房,类似于(但不完全相同)如今与俯冲带相关的I型花岗岩。关于如何以及为什么发起这种变化,以及它是否掌握了从板前构造模式(通常被称为停滞盖层)到移动板块构造的地球动力学过渡的线索,仍然缺乏很好的约束。在这里,我们在单个模型中结合了一系列建议的古生地壳地球动力学机制,以解释所观察到的花岗岩化学变化。数值模拟表明,上地幔对流驱动地壳流动和下沉,无论是薄板还是厚板,都导致岩石圈厚度的巨大差异。当对流软流圈地幔与低层岩石圈相互作用时,会形成分散的地壳滴。在不断增加的P-T条件下,这些滴液中水合偏玄武岩的部分熔融会产生长英质熔体,这些熔体侵入上覆地壳形成TTG。可以保留这些熔体的圆顶结构是这些负滴的正向二元表达。具有升高的K的过渡TTG标志着第二个进化阶段,它是消退和重熔的旧TTG的混合物,形成富含K的熔体和新的TTG熔体。来自不对称滴的TTG衍生的上升熔体与软流圈地幔相互作用形成热的高Mg褐藻类。这些熔体的体积很小,主要为未镀层,它们的热量触发了较低地壳序列的熔融,形成了高K花岗岩。重要的是,这种演化是在所有克拉通中数亿年(大于200?Ma)的时空传播过程。地壳的集中老化表明,汇总的地球化学数据只能广泛反映全球甚至克拉通范围内的地球动力学变化。观察到的地壳化学变化确实标志着导致但不引起现代俯冲的开始。本文是“地球动力学与板块构造的发展”会议讨论的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号