首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Meteorite zircon constraints on the bulk Lu−Hf isotope composition and early differentiation of the Earth
【2h】

Meteorite zircon constraints on the bulk Lu−Hf isotope composition and early differentiation of the Earth

机译:陨石锆石对Lu-Hf同位素组成和地球早期分化的约束

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The 176Lu−176Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day 176Hf/177Hf and 176Lu/177Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess 176Hf due to the accelerated decay of 176Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu−Hf system. Herein we report the first, to our knowledge, high-precision Lu−Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial 176Hf/177Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess 176Hf and accurately represent the Lu−Hf system of the bulk Earth (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago.
机译:行星分化的知识对于理解地球行星的化学和热演化至关重要。 176 Lu− 176 Hf放射性衰变系统已被广泛用于限制地球上硅酸盐分化的时标和机制,但数据解释需要准确估算Hf同位素的演化大块地球。由于Lu和Hf都是难熔的亲石元素,因此可以从当今的 176 Hf / 177 Hf和 176 推断同位素的演化。未分化球粒陨石中的Lu / 177 Hf。但是,由于Lu和Hf的变质重新分布,球粒陨石中的这些比率变化很大,这使得难以确定整个地球的正确参考值。另外,有人提出,由于光激发短寿命异构体导致 176 Lu加速衰变,球粒陨石中含有过量的 176 Hf。如果是这样,则软骨地球的范式对于Lu-Hf系统将是无效的。据我们所知,本文首次报道了陨石晶体锆石的高精度Lu-Hf同位素分析,这是一种抗变质且Lu / Hf低的矿物。我们使用陨石锆石数据定义太阳系初始 176 Hf / 177 Hf(0.279781±0.000018),并进一步确定不含过量 176的原始球粒陨石 Hf并准确地表示块状地球的Lu-Hf系统( 176 Hf / 177 Hf = 0.282793±0.000011; 176 Lu / 177 Hf = 0.0338±0.0001)。我们的结果提供了有力的证据,表明陆地锆石中最原始的Hf反映了距今45亿年前地球上化学富集的硅酸盐储层的发育。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号