首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >From the Cover: Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues
【2h】

From the Cover: Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues

机译:从封面开始:微型组织计用于测量和操纵3D微型组织的力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Physical forces generated by cells drive morphologic changes during development and can feedback to regulate cellular phenotypes. Because these phenomena typically occur within a 3-dimensional (3D) matrix in vivo, we used microelectromechanical systems (MEMS) technology to generate arrays of microtissues consisting of cells encapsulated within 3D micropatterned matrices. Microcantilevers were used to simultaneously constrain the remodeling of a collagen gel and to report forces generated during this process. By concurrently measuring forces and observing matrix remodeling at cellular length scales, we report an initial correlation and later decoupling between cellular contractile forces and changes in tissue morphology. Independently varying the mechanical stiffness of the cantilevers and collagen matrix revealed that cellular forces increased with boundary or matrix rigidity whereas levels of cytoskeletal and extracellular matrix (ECM) proteins correlated with levels of mechanical stress. By mapping these relationships between cellular and matrix mechanics, cellular forces, and protein expression onto a bio-chemo-mechanical model of microtissue contractility, we demonstrate how intratissue gradients of mechanical stress can emerge from collective cellular contractility and finally, how such gradients can be used to engineer protein composition and organization within a 3D tissue. Together, these findings highlight a complex and dynamic relationship between cellular forces, ECM remodeling, and cellular phenotype and describe a system to study and apply this relationship within engineered 3D microtissues.
机译:细胞产生的物理力驱动发育过程中的形态变化,并可以反馈以调节细胞表型。因为这些现象通常发生在体内的3维(3D)矩阵中,所以我们使用微机电系统(MEMS)技术来生成由组织封装在3D微型阵列中的细胞组成的微组织阵列。使用微悬臂梁同时约束胶原蛋白凝胶的重塑并报告在此过程中产生的力。通过同时测量力并观察细胞长度尺度上的基质重塑,我们报告了细胞收缩力与组织形态变化之间的初始相关性和后来的解耦。独立地改变悬臂和胶原基质的机械刚度表明,细胞力随边界或基质刚度而增加,而细胞骨架和细胞外基质(ECM)蛋白的水平与机械应力的水平相关。通过将细胞和基质力学,细胞力和蛋白质表达之间的这些关系映射到微组织收缩性的生物化学力学模型中,我们证明了机械应力的组织内梯度如何从集体细胞收缩性中出现,最后,这种梯度如何产生。用于工程化3D组织中的蛋白质组成和组织。总之,这些发现突出了细胞力,ECM重塑和细胞表型之间的复杂动态关系,并描述了一种在工程3D微组织中研究和应用这种关系的系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号