首页> 美国卫生研究院文献>Plant Physiology >Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases
【2h】

Nitric Oxide Modulates Histone Acetylation at Stress Genes by Inhibition of Histone Deacetylases

机译:一氧化氮通过抑制组蛋白脱乙酰基酶调节应激基因上的组蛋白乙酰化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Histone acetylation, which is an important mechanism to regulate gene expression, is controlled by the opposing action of histone acetyltransferases and histone deacetylases (HDACs). In animals, several HDACs are subjected to regulation by nitric oxide (); in plants, however, it is unknown whether affects histone acetylation. We found that treatment with the physiological donor S-nitrosoglutathione () increased the abundance of several histone acetylation marks in Arabidopsis (Arabidopsis thaliana), which was strongly diminished in the presence of the scavenger 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. This increase was likely triggered by -dependent inhibition of HDAC activity, since and S-nitroso-N-acetyl-dl-penicillamine significantly and reversibly reduced total HDAC activity in vitro (in nuclear extracts) and in vivo (in protoplasts). Next, genome-wide H3K9/14ac profiles in Arabidopsis seedlings were generated by chromatin immunoprecipitation sequencing, and changes induced by , /2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or trichostatin A (an HDAC inhibitor) were quantified, thereby identifying genes that display putative -regulated histone acetylation. Functional classification of these genes revealed that many of them are involved in the plant defense response and the abiotic stress response. Furthermore, salicylic acid, which is the major plant defense hormone against biotrophic pathogens, inhibited HDAC activity and increased histone acetylation by inducing endogenous production. These data suggest that affects histone acetylation by targeting and inhibiting HDAC complexes, resulting in the hyperacetylation of specific genes. This mechanism might operate in the plant stress response by facilitating the stress-induced transcription of genes.
机译:组蛋白乙酰化是调节基因表达的重要机制,其受组蛋白乙酰转移酶和组蛋白脱乙酰酶(HDAC)的相反作用控制。在动物中,一些HDAC受一氧化氮()的调节。然而,在植物中,尚不清楚是否会影响组蛋白乙酰化。我们发现,使用生理性供体S-亚硝基谷胱甘肽()处理可提高拟南芥(Arabidopsis thaliana)中几个组蛋白乙酰化标记的丰度,在清除剂2-4-羧苯基-4,4,5 5-四甲基咪唑啉-1-氧基-3-氧化物。这种增加可能是由HDAC活性的依赖性抑制引起的,因为S-亚硝基-N-乙酰基-dl-青霉胺在体外(在核提取物中)和体内(在原生质体中)显着且可逆地降低了总HDAC活性。接下来,通过染色质免疫沉淀测序生成拟南芥幼苗中的全基因组H3K9 / 14ac图谱,并由/ 2-4-羧基苯基-4,4,5,5-四甲基咪唑啉-1-氧基1-3氧化物或曲古抑菌素诱导变化定量A(HDAC抑制剂),从而鉴定显示出推定调节的组蛋白乙酰化的基因。这些基因的功能分类表明,它们中的许多都参与了植物防御反应和非生物胁迫反应。此外,水杨酸是抵抗生物营养性病原体的主要植物防御激素,它通过诱导内源性产生抑制HDAC活性并增加组蛋白乙酰化。这些数据表明通过靶向和抑制HDAC复合物影响组蛋白乙酰化,导致特定基因的过度乙酰化。通过促进胁迫诱导的基因转录,该机制可能在植物胁迫反应中起作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号