首页> 中文期刊> 《测控技术》 >基于改进BoW模型的行为识别

基于改进BoW模型的行为识别

         

摘要

尽管传统的词袋(BoW,bag of words)模型在复杂场景行为识别中能够保持鲁棒性,但是硬向量量化会导致大量的近似误差,进而产生很差的特征集.行为识别中一个重要的挑战是视觉词汇的构造,从原始特征到分类标签没有直接的映射,因此高层的视觉描述子需要更加精确的词典,故提出基于结构稀疏表示的人体行为识别方法.在所提出方法的BoW模型中,视频表示为组稀疏编码系数的直方图.与传统的BoW模型相比,所提方法具有更少的量化误差,而且高层特征表示可以减少模型参数和存储复杂性,并在标准化的人体行为数据集上评价所提方法,数据集包括KTH,Weimann,UCF-Sports,UCF50人体行为数据集,实验结果表明,所提方法与现存的其他方法相比各方面性能都有显著的提高.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号