首页> 中文期刊> 《中南大学学报(自然科学版)》 >基于刚度链的纯电动汽车车身主断面优化设计

基于刚度链的纯电动汽车车身主断面优化设计

         

摘要

基于梁单元车身简化几何模型建立以主断面为节点的车身静态和动态刚度链数学模型,研究电动车车身主断面属性与刚度以及模态的关系;以车身刚度、模态为约束条件,以车身质量最小为目标函数进行多目标优化,并利用遗传算法求解,得到同时满足静态刚度和频率特性要求的电动汽车车身主断面属性参数.建立对应的车身骨架有限元模型计算刚度及模态,并与刚度链优化结果进行对比分析.对比分析结果验证了本文研究方法的合理性和有效性.%A mathematical model of both static and dynamic stiffness chain of vehicle body based on the beam element simplified geometric model was built, which considered main sections as nodes and accurately described the relationships between properties of electric vehicle body main section, the stiffness and the modal. This model considered body stiffness and modal as constraint conditions and body lightweight as objective function for multi-objective optimization, and it was solved by using genetic algorithms. BIW main sections parameters of electric vehicle which meet the requirements of both static stiffness and dynamic vibration frequency were obtained. A corresponding body frame finite element model was established to calculate its stiffness and modal. The rationality and effectiveness of this method are verified by comparing with the CAE calculation results.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号