首页> 外文学位 >Geologic characterization and the recognition of cyclicity in the Middle Devonian Marcellus Shale, Appalachian Basin, NE USA.
【24h】

Geologic characterization and the recognition of cyclicity in the Middle Devonian Marcellus Shale, Appalachian Basin, NE USA.

机译:美国东北部阿巴拉契亚盆地中泥盆纪马塞勒斯页岩的地质特征和周期性认识。

获取原文
获取原文并翻译 | 示例

摘要

The Middle Devonian Marcellus Shale in the Appalachian basin is one of the leading gas producing formations in the United States. It is clear that we currently do not have good methods for establishing sequence stratigraphic frameworks in these mudrock successions as recent attempts show a bias towards the deep basin depositional model that is patterned after the Black Sea.;Geologic characterization involving eight core data, over 100 petrographic thin sections, SEM, QEMSCAN and XRD data, field studies of Marcellus Shale exposures in New York and Pennsylvania as well as over 800 electrical wireline logs was carried out to better characterize the Marcellus Shale and define cyclicity within the succession. Sedimentary structures and features such as laminations, starved ripples, grading, burrows, bioturbation, reworking of authigenic minerals, abundant and aligned benthic fossils and basal lag deposits were interpreted to be indicative of significant oxygenation and current activity. These observations suggest that Marcellus Shale facies were deposited in a non-permanently anoxic, shallow muddy epeiric sea. The key control on sedimentation was a combination of local geologically rapid subsidence/uplift events, seasonal variations in nutrient sourcing of algal blooms, climate and sediment supply, rather than water depth. Essentially, during Marcellus Shale deposition, subsidence/uplift events controlled both the creation accommodation space and the character of the sediment supply into the Appalachian Basin. Climate and nutrient sourcing of algal bloom controlled the creation of seasonal anoxia in the bottom waters and together with variations in the bottom water chemistry, these factors dictate whether siliciclastics sediments and organics are deposited or whether carbonates are deposited during a particular depositional cycle.;Given a depositional model that is not driven primarily by sea-level fluctuations, new concepts and methods for recognizing and describing cyclicity have been developed. The concepts and methods involved the use of proxies to define important depositional surfaces and packages. The proxies were developed by integrating total organic carbon content, mineralogical composition, facies description and log signatures. New terms were introduced to describe important surfaces and packages. These terms include Preservation Shutdown Surface, Preservation Initiation Surface, Maximum Preservation Surface, Preservation Shutdown Tract, Preservation Initiation Tract and Preservation Decline Tract. The first three terms describe depositional surfaces while the last three terms describe the shale packages (deposits) that are contained by them.;The results indicate that the preservation initiation tract (PIT) deposits together with the deposits of the Maximum Preservation Surface (Zone) generally have the highest total organic carbon contents, the best reservoir properties and also contain the most brittle facies. The most organic-rich interval occurs at the base of the Marcellus Shale within the preservation initiation tract deposits of the Lower Union Springs Member. TOC usually range between 4% and 12% in these deposits, but may be up to 20% in very organic-rich intervals. The most brittle facies are the pyritic sandstone, the noncalcareous siliceous-argillaceous mudstone and the siliceous mudstone facies. The results also suggest that up to four cycles can be recognized from the base of the Onondaga Limestone, below the Marcellus Shale to the base of the Stafford Limestone above the Marcellus Shale. With limited age-datable fossils, it is difficult to establish a high resolution chronostratigraphic framework for the cycles. This work shows that it is possible to define cyclicity in organic matter-rich mudrocks-dominated successions without bias towards the deep-basin depositional model.
机译:阿巴拉契亚盆地中泥盆纪马塞勒斯页岩是美国主要的天然气生产地层之一。显然,我们目前还没有在这些泥岩演替中建立层序地层学框架的好方法,因为最近的尝试表明偏向于在黑海之后形成的深海盆地沉积模型。;涉及8个核心数据(超过100个)的地质特征进行了岩相薄片,SEM,QEMSCAN和XRD数据,纽约和宾夕法尼亚州Marcellus页岩暴露的野外研究以及800多个电线电缆测井资料,以更好地表征Marcellus页岩并确定演替过程中的周期性。沉积物的结构和特征,例如层状,饥饿的波纹,坡度,洞穴,生物扰动,自生矿物的再加工,丰富而整齐的底栖化石和基底滞后沉积物,被解释为表明大量的充氧作用和当前活动。这些观察结果表明,马塞勒斯页岩相沉积在非永久缺氧的浅层泥质表观海中。沉积的关键控制措施是结合局部地质快速沉降/隆升事件,藻华的营养物供应的季节性变化,气候和沉积物供应,而不是水深。本质上,在马塞勒斯页岩沉积过程中,沉陷/隆升事件既控制了形成空间,又控制了向阿巴拉契亚盆地的沉积物供应特征。藻华的气候和养分供应控制着底部水域季节性缺氧的产生,以及底部水化学的变化,这些因素决定了在特定的沉积周期中是否沉积了硅质碎屑沉积物和有机物,或者是否沉积了碳酸盐。一个主要不受海平面波动驱动的沉积模型,已经开发出用于识别和描述周期性的新概念和方法。这些概念和方法涉及使用代理来定义重要的沉积表面和包装。通过整合总有机碳含量,矿物组成,相描述和测井特征来开发代理。引入了新术语来描述重要的表面和包装。这些术语包括“保存关闭表面”,“保存启动表面”,“最大保存表面”,“保存关闭区域”,“保存开始区域”和“保存下降区域”。前三个术语描述沉积面,后三个术语描述沉积面所包含的页岩组合(沉积物);结果表明保存起始道(PIT)沉积物与最大保存面(Zone)沉积物一起通常具有最高的总有机碳含量,最佳的储层性质以及最脆的相。富含有机物的层段发生在下尤恩斯普林斯河段的保存起始道沉积物中的马塞勒斯页岩底部。这些沉积物中的总有机碳含量通常在4%至12%之间,但在富含有机物的时间段中,有机碳最高可达20%。最易碎的相是黄铁矿砂岩,非钙质硅质泥质泥岩和硅质泥岩相。该结果还表明,从马塞勒页岩下方的奥农达加石灰石的底部到马塞勒页岩上方的斯塔福德石灰石的底部,最多可以识别四个周期。由于可老化的化石有限,很难为这些周期建立高分辨率的年代地层学框架。这项工作表明,可以在富含有机质泥岩为主的演替过程中定义周期性,而不会偏向深盆沉积模型。

著录项

  • 作者单位

    Colorado School of Mines.;

  • 授予单位 Colorado School of Mines.;
  • 学科 Petroleum Geology.;Geology.;Sedimentary Geology.
  • 学位 Ph.D.
  • 年度 2014
  • 页码 315 p.
  • 总页数 315
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:54:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号