首页> 外文学位 >Effect of Nano-Pore Wall Confinements on Non-Ideal Gas Dynamics in Organic Rich Shale Reservoirs
【24h】

Effect of Nano-Pore Wall Confinements on Non-Ideal Gas Dynamics in Organic Rich Shale Reservoirs

机译:纳米孔隙壁约束对有机富页岩储层非理想气体动力学的影响

获取原文
获取原文并翻译 | 示例

摘要

The advancements in horizontal well drilling and multistage hydraulic fracturing technology enabled us to unfold major sources of hydrocarbon trapped in ultra-tight formations such as tight sands and organic rich shales. Tremendous gas production from these reservoirs has transformed today's energy landscape. To effectively optimize the hydrocarbon production from these ultra-tight formations, it is essential to study and model the fluid transport and storage sealed in multiscale pore structure of these formations, i.e. micro-, meso- and macro-pores. In shale gas reservoirs, Kerogen, the finely dispersed organic nano-porous material with an average pore size of less than 10 nm holds bulk of the total gas in place (GIP) in an adsorbed state. The molecular level interactions between fluid-fluid and fluid-solid organic pore walls govern the transport and storage in these organic nano-pores. Among different methods used to model gas dynamics in organic nano-pores such as the multi-continuum, molecular dynamics and Monte Carlo, the lattice Boltzmann method (LBM) is a more effective method with much less computational cost relative to other techniques. This is due to the applicability of this technique in wide range of flow regimes and ease of handling complex boundary conditions such as incorporation of the molecular interactions in porous media.;The objective of this research is to develop a two-dimensional LBM of organic rich shales that can be used to quantify the effect of organic pore wall confinement on non-ideal gas flow and storage in organic nano-pores of the shale reservoirs. This method incorporates the involvement of molecular forces between fluid particles such as, adsorptive and cohesive forces. Using the Langmuir-slip boundary condition at capillary walls, slippage of free gas molecules and surface transport of adsorbed molecules are studied. This effect is investigated in a large range of Knudsen numbers from continuum flow to transition flow regime with varying capillary width sizes from 100 nm to 5 nm.;Simulation results concentrates on the molecular phenomena like- adsorptive/cohesive forces, and the kinetic energy of the fluid molecules at different pressures, and reservoir temperatures. The LBM model results displays a clear indication that the gas transport in the capillary tube is depends on the pore width size. A critical Knudsen number exists with changing reservoir conditions, where the anticipated fluid velocity profile in organic nano-pores alters showing higher flow rate as capillary widths reduces due to the underlying effect of molecular phenomena of double slippage and wall confinement, introduced earlier by Fathi et al. These results are compared with traditional continuum Hagen-Poiseuille law, Klinkenberg slip theory, and recent modified version of Klinkenberg slip flow equation. This work is not only important for the advancement of shale gas flow simulator, but also for organic rich shale characterization.
机译:水平井钻探和多级水力压裂技术的进步使我们得以开发困在超致密地层中的主要烃源,例如致密砂岩和有机富页岩。这些储层产生的大量天然气已经改变了当今的能源格局。为了有效地优化这些超致密地层的烃产量,必须研究和模拟密封在这些地层的多尺度孔结构中的流体输送和储存,即微孔,中孔和大孔。在页岩气储层中,Kerogen是一种平均孔径小于10 nm的细分散的有机纳米多孔材料,可将全部总气体(GIP)保持在吸附状态。流体-流体和流体-固体有机孔壁之间的分子水平相互作用决定了这些有机纳米孔中的运输和存储。在用于模拟有机纳米孔中气体动力学的不同方法(例如多连续体,分子动力学和蒙特卡洛)中,格子玻尔兹曼方法(LBM)是一种更有效的方法,相对于其他技术,其计算成本要低得多。这是由于该技术在宽范围的流动状态中的适用性以及易于处理复杂的边界条件(例如将分子相互作用纳入多孔介质中)的原因。该研究的目的是开发一种富含有机物的二维LBM。页岩可用于量化有机孔隙壁封闭对非理想气体流动和页岩储集层有机纳米孔隙中的存储的影响。该方法吸收了流体颗粒之间的分子力,例如吸附力和内聚力。利用毛细管壁上的Langmuir滑移边界条件,研究了游离气体分子的滑移和吸附分子的表面传输。在从连续流到过渡流状态的大范围Knudsen数中研究了这种效应,毛细管宽度尺寸从100 nm到5 nm不等;模拟结果集中在分子现象上,例如吸附力/内聚力以及流体分子在不同的压力和储层温度下。 LBM模型的结果清楚地表明,毛细管中的气体传输取决于孔径大小。临界克努森数随储层条件的变化而存在,其中有机纳米孔的预期流速分布发生变化,显示出较高的流速,因为毛细管宽度减小是由于双重滑移和壁约束的分子现象的潜在作用所致,Fathi等人早些时候提出等将这些结果与传统的连续哈根-泊瓦依定律,克林肯贝格滑动理论和克林肯贝格滑动流方程的最新修改版进行了比较。这项工作不仅对页岩气流动模拟器的发展具有重要意义,而且对于富含有机质的页岩表征也很重要。

著录项

  • 作者

    Gupta, Nupur.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Petroleum engineering.
  • 学位 M.S.
  • 年度 2018
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号