首页> 外文学位 >Authority-on-demand: Adaptive suspension control for the Gravity Probe B gyroscopes.
【24h】

Authority-on-demand: Adaptive suspension control for the Gravity Probe B gyroscopes.

机译:按需授权:重力探头B陀螺仪的自适应悬挂控制。

获取原文
获取原文并翻译 | 示例

摘要

The Gravity Probe B (GP-B) experiment will test Einstein's General Theory of Relativity by measuring non-Newtonian drifts in the angular-momentum vectors of four ultra-precise electrostatically-suspended gyroscopes. The extremely-small relativistic drifts are difficult to measure, because they can be masked by larger Newtonian drifts caused by (amongst others) the gyroscope-suspension forces and torques.; GP-B will reduce the nominal support forces and torques by suspending the gyroscopes within a dragfree earth-orbiting spacecraft. However, the spacecraft will also be subject to a number of unpredictable micrometeoroid strikes with sufficient momentum to cause significant motion and vibration of the spacecraft. Subsequent to such strikes, it is crucial that the gyroscope rotors be prevented from colliding with their housings. Linear controllers with sufficient authority to do so produce excessive forces in response to the nominal disturbances. With such controllers, the Newtonian drifts would exceed GP-B error margins.; The Authority-on-Demand (AOD) concept was developed to address this problem. Specifically, AOD is a self-tuning adaptive controller which uses some or all of the system states which it is controlling to: (1) detect the need for higher authority, (2) smoothly increase its authority, but only as necessary to meet specifications, and (3) stably reduce its authority back to a low nominal authority as the disturbance is brought under control.; The first part of the dissertation develops the AOD concept in general and by example of its application to a 1/ms2 plant—a simplified form of the GP-B problem. It is shown that AOD performs as desired: it adapts quickly to control large meteoroid strikes, and then smoothly reduces its authority back to nominal. The dynamic range of the AOD controller is limited only by sampling rate and actuator saturation. General conditions for the exponential stability of an AOD controller are developed, and various implementation issues such as computational delay are discussed.; The second part of the dissertation extends the AOD controller to the full 3-axis GP-B system. The resulting controller has been implemented in C-code and will fly on the GP-B spacecraft. Simulations show that the gyroscope drift-rates will be several orders of magnitude lower than with a linear controller.
机译:重力探针B(GP-B)实验将通过测量四个超精密静电悬浮陀螺仪的角动量矢量中的非牛顿漂移来测试爱因斯坦的相对论。极小相对论的漂移很难测量,因为它们可能被陀螺仪悬架力和扭矩(以及其他)引起的更大的牛顿漂移所掩盖。 GP-B可以通过将陀螺仪悬挂在无阻力的地球轨道航天器内来降低名义支撑力和扭矩。但是,航天器还将遭受许多无法预料的微流星体撞击,其动量足以引起航天器的明显运动和振动。在这种撞击之后,至关重要的是要防止陀螺仪转子与外壳碰撞。具有足够权限的线性控制器会根据标称干扰产生过大的力。使用这样的控制器,牛顿漂移将超过GP-B的误差范围。为了解决此问题,开发了按需授权 AOD )概念。具体来说,AOD是一种自调整自适应控制器,它使用使用它所控制的部分或全部系统状态来:(1)检测对更高权限的需求,(2)平稳地增加其权限,但仅在满足规格要求时才需要;(3)随着干扰得到控制,稳定地将其权限降低到较低的名义权限;论文的第一部分对AOD概念进行了总体发展,并举例说明了其在1 / 2 植物中的应用,这是GP-B问题的简化形式。结果表明,AOD的性能符合预期:它可以快速适应以控制大的流星体撞击,然后将其权限平稳地降低到标称值。 AOD控制器的动态范围仅受采样率和执行器饱和度限制。提出了AOD控制器指数稳定性的一般条件,并讨论了各种实现问题,例如计算延迟。论文的第二部分将AOD控制器扩展到整个3轴GP-B系统。最终的控制器已经用C代码实现,并将在GP-B航天器上飞行。仿真表明,陀螺仪的漂移率将比线性控制器低几个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号