首页> 外文学位 >Interval programming: A multi-objective optimization model for autonomous vehicle control.
【24h】

Interval programming: A multi-objective optimization model for autonomous vehicle control.

机译:间隔编程:用于自主车辆控制的多目标优化模型。

获取原文
获取原文并翻译 | 示例

摘要

Controlling the behavior of a robot or autonomous vehicle in a stochastic, complex environment is a formidable challenge in artificial intelligence. In stochastic domains, both the current state of the vehicle and the environment are typically reconsidered before deciding each action. If the domain is simple enough, effective plans can be encoded by predetermining the best vehicle action for all possible contingencies, or in all possible vehicle states. In complex environments, particularly with other vehicles, the explosion of possible contingencies or vehicle states prohibits this. In these cases, behavior based architectures are often employed, where each behavior focussed on a specialized vehicle objective. Effective overall vehicle behavior relies heavily on the proper combination, or arbitration, of individual behaviors.; In this work, we present a mathematical programming model, interval programming (IvP), for finding an optimal decision given a set of competing objective functions. We concur with others who believe effective behavior-based action selection involves a multi-objective optimization problem where each behavior contributes a single objective function. To date, such methods have depended on objective functions defined over a sufficiently small discrete decision space as to allow explicit evaluation of all decisions. We believe this is unrealistic in practice and that measures typically taken to sidestep this problem are unacceptable. On the other hand, we also believe that traditional analytical multi-objective optimization methods make demands on objective function form that are unrealistic from the vehicle behavior perspective.; The IvP model strives for a rich balance of speed, flexibility, and accuracy through the use of piecewise linearly defined objective functions. The piece boundaries are typically intervals over decision variables, but may also be intervals over consequences of decision variables coupled with to be blended in each decision. The work here is presented in three parts. First we define the IvP model and show how behaviors create IvP functions with sufficient speed and accuracy. Then we provide a set of algorithms for finding quick, globally optimal solutions to the multi-objective IvP problem using branch and bound techniques. And finally, using an underwater vehicle simulator and a group of core vehicle behaviors, we demonstrate the IvP model on the particularly difficult problem of transiting with other moving, potentially uncooperative, vehicles creating time dependent path obstructions.
机译:在随机,复杂的环境中控制机器人或自动驾驶汽车的行为是人工智能的巨大挑战。在随机域中,通常在决定每个动作之前重新考虑车辆的当前状态和环境。如果域足够简单,则可以通过针对所有可能的意外事件或在所有可能的车辆状态中确定最佳的车辆动作,对有效的计划进行编码。在复杂的环境中,尤其是在其他车辆上,可能发生的突发事件或车辆状态的爆炸均禁止这种情况。在这些情况下,通常采用基于行为的体系结构,其中每种行为都专注于专门的车辆目标。有效的总体车辆行为在很大程度上取决于各个行为的适当组合或仲裁。在这项工作中,我们提出了一种数学规划模型,即区间规划(IvP),用于在给定一组相互竞争的目标函数的情况下找到最优决策。我们与其他人一样,他们认为有效的基于行为的动作选择涉及多目标优化问题,其中每个行为都贡献一个目标功能。迄今为止,这种方法依赖于在足够小的离散决策空间上定义的目标函数,以允许对所有决策进行显式评估。我们认为这在实践中是不现实的,并且通常采取的避免该问题的措施是不可接受的。另一方面,我们还认为,传统的分析多目标优化方法对目标函数形式的要求从车辆行为的角度来看是不现实的。 IvP模型通过使用分段线性定义的目标函数,力求在速度,灵活性和准确性之间取得平衡。片段边界通常是决策变量上的间隔,但也可能是决策变量与要混合在每个决策中的结果之间的间隔。这里的工作分为三个部分。首先,我们定义IvP模型,并说明行为如何以足够的速度和准确性创建IvP函数。然后,我们提供了一组算法,用于使用分支定界技术为多目标IvP问题找到快速的全局最优解。最后,使用水下航行器模拟器和一组核心车辆行为,我们演示了IvP模型,该模型解决了与其他移动的,可能不合作的车辆过渡时特别困难的问题,从而造成了时间依赖性路径障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号