首页> 外文学位 >Control and design of critical properties of PECVD carbon doped low-k silica thin films by deposition methods and film thickness.
【24h】

Control and design of critical properties of PECVD carbon doped low-k silica thin films by deposition methods and film thickness.

机译:通过沉积方法和膜厚控制和设计PECVD碳掺杂低k二氧化硅薄膜的关键性能。

获取原文
获取原文并翻译 | 示例

摘要

On-chip interconnect has become a critical barrier to a continuing scaling down of IC devices. Copper is expected to alleviate the resistance problem for next few generations, the capacitance problem is expected to be alleviated by reducing the dielectric constant of intermetal dielectric that isolated conducting lines from each other. However, this later task cannot be fulfilled by simply finding a material with a low dielectric constant (low-k). The low-k materials should meet strict requirements in terms of its dielectric constant loss, moisture resistance, thermal stability and mechanical properties. Carbon doped silicon dioxide seems to meet the requirements and is expected to find wide applications as IMD.; With the decrease of device sizes, thinner and thinner dielectric films will be employed for insulation. As expected, the film properties will deviate from that of their bulk counterparts due to the constraints imposed by thin film geometry. It is found from our recent studies that most of the structural, optical, mechanical, electrical, dielectric and thermal properties of the films are thickness dependent. Thus, the thickness dependent dielectric thin film properties becomes an important IC design and manufacturing concern.; This work presents the thickness and deposition dependence of thermal, optical, dielectric, electric properties of low-k carbon doped silicon thin films. Low-k dielectric carbon-doped silicon dioxide films created by Plasma Enhanced Chemical Vapor Deposition (PECVD) using a six-station sequential deposition system and films created by PECVD in a single deposition station were studied with varying thickness. A thickness dependent glass transition model was obtained and was found to well explain the observed experimental data. The thickness and temperature dependent refractive index have also been investigated using an optical spectrometer coupled with a hot stage. The observed results were explained by the microstructure of the thin films studied by Fourier transform infrared spectroscopy.; The experimental results obtained on the dielectric strength EB of carbon doped silicon dioxide thin films for various film thicknesses using I-V measurements with metal-insulator-semiconductor (MIS) structures suggest a new relationship between the film thickness d and the dielectric strength EB, i.e.,{09}EB ∝ ( d − dc)−n. This inverse power law relationship indicates the existence of a critical thickness dc which may correspond to an ultimate thickness limit below which the rate of detrapping of electron charges exceeds the rate of trapping and no dielectric breakdown can be observed. The temperature and deposition method dependence of exponential parameter n and critical thickness limit dc, the conduction mechanism and time dependent dielectric breakdown have also been investigated and discussed.
机译:片上互连已成为继续缩小IC器件尺寸的关键障碍。期望铜可以减轻下一代的电阻问题,可以期望通过减小将导线彼此隔离的金属间电介质的介电常数来缓解电容问题。但是,仅通过找到介电常数低(低k)的材料就无法完成此任务。低介电常数材料在介电常数损耗,耐湿性,热稳定性和机械性能方面应满足严格的要求。碳掺杂的二氧化硅似乎可以满足要求,并且有望作为IMD得到广泛的应用。随着器件尺寸的减小,越来越薄的介电膜将用于绝缘。正如预期的那样,由于薄膜几何形状的限制,薄膜的性能将不同于它们的整体性能。从我们最近的研究中发现,膜的大多数结构,光学,机械,电,介电和热性能与厚度有关。因此,取决于厚度的介电薄膜特性成为重要的IC设计和制造关注点。这项工作提出了低k掺杂碳的硅薄膜的热,光学,介电,电性能的厚度和沉积依赖性。研究了使用六工位顺序沉积系统通过等离子体增强化学气相沉积(PECVD)制备的低k介电碳掺杂的二氧化硅薄膜和在单个沉积工位中通过PECVD制备的薄膜的厚度。获得了厚度依赖性玻璃化转变模型,发现该模型可以很好地解释观察到的实验数据。还使用与热台耦合的光谱仪研究了厚度和温度相关的折射率。用傅立叶变换红外光谱研究的薄膜的微观结构解释了观察到的结果。通过使用金属-绝缘体-半导体(MIS)结构进行IV测量获得的不同厚度的碳掺杂二氧化硅薄膜的介电强度EB的实验结果表明,膜厚 d 和介电强度 E B ,即{09} E B ∝( d-d < sub> c -n 。这种逆幂定律关系表明存在临界厚度 d c ,该厚度可能对应于最终厚度极限,在该极限极限以下,电子电荷的俘获速率超过了俘获速率并且没有观察到电介质击穿。还研究了温度和沉积方法对指数参数 n 和临界厚度极限 d c 的依赖性,导电机理以及与时间有关的介电击穿和讨论。

著录项

  • 作者

    Zhou, Hong.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2002
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号