首页> 外文学位 >Microstructure analysis and solid mechanics modeling of friction stir welding.
【24h】

Microstructure analysis and solid mechanics modeling of friction stir welding.

机译:搅拌摩擦焊的显微组织分析和固体力学建模。

获取原文
获取原文并翻译 | 示例

摘要

Friction Stir Welding (FSW) is one of the most significant developments in solid-phase welding technology in the last decade. Joining in FSW is achieved through a mixing and extruding action of a rotating pin-shoulder tool that moves between two parts being joined.; This dissertation describes a combined numerical/experimental investigation of the FSW process. In the numerical part of the investigation, solid mechanics based models have been developed for the FSW process. To perform numerical simulations of the process based on the solid mechanics models, finite element procedures have been established and demonstrated by utilizing a general-purpose commercial software. The focus of the simulations is to determine the velocity field, material flow characteristics and plastic strain distributions in FSW. An Arbitrary Lagrangian-Eulerian (ALE) finite element formulation with adaptive meshing is adopted, which considers elastic-plastic deformation, finite strain, and temperature-dependent material properties. Two interface models (the Slipping Interface Model and the Frictional Contact Model ) have been proposed to simulate the complex physical phenomenon along the tool and work-plate interface. In the experimental part of the study, material flow patterns during and after welding have been experimentally determined by extending an existing visualization technique, in which thin slices of materials are placed along the faying surface between two plates being butt-welded. The microstructures of FSW welds corresponding to a wide range of process parameter values have been examined.; The main conclusions of present investigation are summarized here. (1) Simulation predictions based on the slipping interface and frictional contact models show good consistency with each other. (2) Simulation predicted marker positions during and after welding compare well with experimental measurements. (3) Simulation results show that a thin velocity boundary layer exists around the rotating tool. (4) Simulation predictions and experimental observations both show that material particles ahead of the rotating tool pass the tool from the retreating side and not from the advancing side. (5) Simulation results show that large plastic strains exist (a) in a thin layer around the tool and (b) in the advancing side plate material of the weld behind the tool. (6) Experimental examinations of microstructures in friction stir welds reveal that an “onion ring” type pattern always occurs in the advancing-side-plate material of the welds. (7) Simulation results show that the onion ring pattern is formed due to the build-up of high plastic deformation bands at the boundary of the velocity layer, located behind the rotating tool in advancing side. (8) Comparisons of simulation predictions and experimental observations demonstrate that there exists a good correlation between effective plastic strain distributions and microstructure zones in friction stir welds.
机译:搅拌摩擦焊(FSW)是近十年来固相焊接技术最重要的发展之一。 FSW的连接是通过在两个要连接的零件之间移动的旋转销钉肩工具的混合和挤压作用实现的。本文描述了FSW过程的组合数值/实验研究。在调查的数字部分,已经为FSW过程开发了基于固体力学的模型。为了基于固体力学模型对过程进行数值模拟,已经建立了有限元程序,并通过使用通用商业软件进行了演示。模拟的重点是确定FSW中的速度场,材料流动特性和塑性应变分布。采用具有自适应啮合的任意拉格朗日-欧拉(ALE)有限元公式,该公式考虑了弹塑性变形,有限应变和温度相关的材料特性。提出了两种界面模型(滑动界面模型摩擦接触模型)来模拟沿工具和工作板界面的复杂物理现象。在研究的实验部分,通过扩展现有的可视化技术,通过实验确定了焊接过程中和焊接后的材料流型,其中沿两对接焊接的板之间的接合面放置了薄片材料。已经检查了与各种工艺参数值相对应的FSW焊缝的显微组织。本文总结了本次调查的主要结论。 (1)基于滑动界面和摩擦接触模型的仿真预测显示出良好的一致性。 (2)模拟预测的焊接过程中和焊接后的标记位置与实验测量结果相吻合。 (3)仿真结果表明,旋转工具周围存在薄的速度边界层。 (4)仿真预测和实验观察均表明,旋转工具前方的材料颗粒从后退侧而不是前进侧通过工具。 (5)仿真结果表明,(a)在工具周围的薄层中和(b)在工具后面的焊缝的前进侧板材料中存在较大的塑性应变。 (6)对摩擦搅拌焊缝中的显微组织进行的实验检查表明,在焊缝的前进侧板材中始终出现``洋葱圈''型图案。 (7)仿真结果表明,由于在前进侧旋转工具后面的速度层边界处形成了高塑性变形带,因此形成了洋葱圈图案。 (8)仿真预测和实验观察的比较表明,搅拌摩擦焊缝中有效塑性应变分布与微观组织区域之间存在良好的相关性。

著录项

  • 作者

    Xu, Shaowen.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Engineering Mechanical.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号