首页> 外文学位 >A lindenmayer system-based approach for the design and fabrication of nutrient delivery networks in tissue constructs.
【24h】

A lindenmayer system-based approach for the design and fabrication of nutrient delivery networks in tissue constructs.

机译:基于Lindenmayer系统的方法,用于组织构造物中营养物输送网络的设计和制造。

获取原文
获取原文并翻译 | 示例

摘要

Remarkable advances in the fields of biomedical engineering, material science, molecular biology and biochemistry have made contributions for the cross-disciplinary field of tissue engineering. The field of tissue engineering applies the engineering and the life sciences principles to seek man-made replacements for damaged tissue or whole organs. Porous scaffolds are considered as the key components of tissue engineering because in the regenerative process porous scaffolds guide cells for attachment, proliferation and differentiation in the desired tissue. In today's technology, large thick tissue constructs have reported limited success primarily due to the inability of cells to survive deep within the scaffold. On the other hand, without access to adequate nutrients, cells placed deep within the tissue construct will die out, leading to non-uniform tissue regeneration. Currently, there is a necessity to design nutrient conduit networks within the tissue construct to enable cells to survive in the matrix. However, the design and fabrication of complex networks within a tissue construct is a challenging process.;In this work, we have explored the use of Lindenmayer Systems (L-Systems), a fractal-based language algorithm framework, to generate nutrient conduit networks in two and three-dimensional architecture with several degrees of complexity. The architecture is based on a set of pre-determined axioms and production rules that guide the growth of the conduit networks. The conduit network maintains a parent--child relationship between each branch of the network. This thesis reports research addressing some of the challenges and proposed solutions in applying the Lindenmayer Systems for the design and freeform fabrication of tissue scaffolds with inbuilt network branches. In addition, we present a maskless photopolymerization based layered manufacturing concept to fabricate the L-System networks in polymeric hydrogels. The major research accomplishments reported in this thesis include: (i) Development of the Lindenmayer Systems to generate pre-designed nutrient branched networks within the scaffold architecture (ii) Development of a Digital Light Processing (DLP) setup based on a layered manufacturing photopolymerization system to realize the designed architecture at multiple scales.;Lindenmayer Systems enable many novel approaches in modeling and design of complex branching network systems for tissue scaffolds to provide sufficient nutrients distribution for the cells. DLP based layered fabrication also enables researchers to realize precise control of internal architecture design of scaffolds. Since existing design and fabrication techniques lack sufficient nutrient and oxygen delivery deep into the thick scaffolds, we believe that this research will make significance contributions to scaffold based tissue engineering and regenerative medicine. Future research efforts will be undertaken to explore the development of parametric L-System axioms and rules through the use of pre-defined growth functions which allow the branch structure to grow based on the external availability of nutrients and initial input conditions. The goal would be to design scaffold internal architecture designs which take into account manufacturing process constraints while allowing maximal control on the growth of the branched networks. It is hoped that by providing complex internal patterns that mimic the cellular structure, cells can be guided to form the intended structure. On the manufacturing front, the system will need to be automated to provide a fully integrated SFF system capable of repeatable and stable fabrication process through accurate modeling and control of the various fabrication parameters.
机译:生物医学工程,材料科学,分子生物学和生物化学领域的显着进步为组织工程的跨学科领域做出了贡献。组织工程学领域应用工程学和生命科学原理来寻找人造组织替换受损组织或整个器官的方法。多孔支架被认为是组织工程的关键组成部分,因为在再生过程中,多孔支架指导细胞在所需组织中的附着,增殖和分化。在当今的技术中,主要由于细胞无法在支架内深处存活,因此,大型厚组织构建物的成功报道有限。另一方面,如果无法获得足够的营养,放置在组织构建体深处的细胞将死亡,导致组织再生不均匀。当前,有必要在组织构建体中设计营养导管网络以使细胞能够在基质中存活。然而,组织构造中复杂网络的设计和制造是一个具有挑战性的过程。在这项工作中,我们探索了使用基于分形的语言算法框架Lindenmayer Systems(L-Systems)生成营养导管网络的方法。在具有几个程度的复杂度的二维和三维架构中。该体系结构基于一组指导管道网络增长的预定公理和生产规则。管道网络在网络的每个分支之间维持父子关系。这篇论文报道了针对在使用Lindenmayer系统进行具有内置网络分支的组织支架的设计和自由形式制造中应用Lindenmayer系统的挑战和提出的解决方案的研究。此外,我们提出了基于无掩模光聚合的分层制造概念,以制造聚合物水凝胶中的L系统网络。本论文报道的主要研究成果包括:(i)开发Lindenmayer系统以在支架架构内生成预先设计的营养支化网络(ii)开发基于分层制造光聚合系统的数字光处理(DLP)装置Lindenmayer Systems为组织支架的复杂分支网络系统的建模和设计提供了许多新颖的方法,以为细胞提供足够的营养分配。基于DLP的分层制造还使研究人员能够实现对脚手架内部结构设计的精确控制。由于现有的设计和制造技术缺乏足够的营养和氧气输送到厚支架的深处,因此我们相信这项研究将为基于支架的组织工程和再生医学做出重要贡献。未来的研究工作将通过使用预定义的增长函数来探索参数L系统公理和规则的发展,这些函数允许分支结构根据养分的外部可用性和初始输入条件而增长。目标是设计支架内部架构设计,该设计应考虑制造过程的限制,同时允许最大程度地控制分支网络的增长。希望通过提供模仿细胞结构的复杂内部模式,可以引导细胞形成所需的结构。在制造方面,该系统将需要自动化,以提供一个完全集成的SFF系统,该系统可以通过对各种制造参数进行精确建模和控制来实现可重复且稳定的制造过程。

著录项

  • 作者

    Yasar, Ozlem.;

  • 作者单位

    The University of Oklahoma.;

  • 授予单位 The University of Oklahoma.;
  • 学科 Design and Decorative Arts.;Engineering Industrial.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 101 p.
  • 总页数 101
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号