首页> 外文学位 >Guided self-assembly and directed restructuring of mesoscopic silica using electric fields.
【24h】

Guided self-assembly and directed restructuring of mesoscopic silica using electric fields.

机译:使用电场引导介观二氧化硅的自组装和定向重组。

获取原文
获取原文并翻译 | 示例

摘要

Surfactant-templated synthesis of ceramics has received considerable attention due to the ease with which these methods produce materials with well-controlled nanometer-sized porosity. A key limitation with this approach is the pores produced by the surfactant template do not always adopt the desired long-range order. Specifically, the ability to straighten the pores, orient them in desired directions, and eliminate domain boundaries must be improved in order for these materials to be useful as membranes for filtration, sensing or catalysis.; One solution to this problem is to guide the self-assembly using applied fields. The idea is to produce short-range order using self-assembly while generating long-range order using the field. Electric fields are an intriguing option because they are easily controlled and can produce orientation in different directions. Recent work by Trau et al. found that mesoscopic silica prepared under the combined influence of high strength electric fields, surface registry and confinement effects possessed oriented nanochannels. The goal of this project was to study the effects of electric fields on surfactant-templated mesoscopic silica.; It was found that low strength (E ∼ 200 V/m) electric fields can both guide the self-assembly of the structure as it forms and alter the organization of material that has already ordered. This is the first demonstration of the latter effect in a templated ceramic system. Experimentally, micron-sized particles transformed into continuous fibers under the influence of the field. This macroscopic change in morphology was accompanied by alignment of the surfactant-templated pores in the direction of the field. Quantitative analysis of the response indicates these structural changes occur through an electrokinetic mechanism rather than dielectric polarization. The distinction is important as electrokinetic phenomena arise from the action of a field on free charge while polarization depends on the dielectric contrast at an interface. This suggests it is possible to orient the structure using relatively weak fields when charged surfactants are used as templates.; The low strength electric field effect described in this dissertation is a simple, but powerful, addition to the existing collection of techniques for controlling the structure of mesoscopic silica.
机译:由于表面活性剂为模板的陶瓷合成方法因其易于生产具有良好控制的纳米级孔隙率的材料而备受关注。这种方法的主要局限性在于表面活性剂模板产生的孔并不总是采用所需的长程顺序。具体地说,为了使这些材料用作过滤,传感或催化的膜,必须改善拉直孔,将孔定向在所需方向上以及消除区域边界的能力。解决此问题的一种方法是使用应用字段指导自组装。这个想法是使用自组装产生短程指令,而使用场产生长程指令。电场是一个有趣的选择,因为它们易于控制并且可以在不同方向上产生方向。 Trau等人的最新工作。发现在高强度电场,表面配准和约束效应共同作用下制备的介观二氧化硅具有定向的纳米通道。该项目的目的是研究电场对表面活性剂模板介观二氧化硅的影响。发现低强度(E〜200 V / m)电场既可以引导结构形成时的自组装,也可以改变已经订购的材料的组织。这是模板陶瓷系统中后一种效应的首次展示。实验上,在电场的影响下,微米级颗粒转变为连续纤维。这种形态上的宏观变化伴随着表面活性剂模板孔在磁场方向上的排列。对该响应的定量分析表明,这些结构变化是通过电动机制而不是介电极化发生的。这种区分很重要,因为电动现象是由电场对自由电荷的作用引起的,而极化则取决于界面处的介电对比度。这表明当使用带电荷的表面活性剂作为模板时,可以使用相对弱的电场来定向结构。本文介绍的低强度电场效应是一种简单但功能强大的方法,是对控制介观二氧化硅结构的现有技术的补充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号