首页> 外文学位 >Mitochondrial DNA repair enzymes targeted to insulin secreting cells enhance cellular survival, and glycerol metabolism protects mice in streptozotocin induced type one diabetes.
【24h】

Mitochondrial DNA repair enzymes targeted to insulin secreting cells enhance cellular survival, and glycerol metabolism protects mice in streptozotocin induced type one diabetes.

机译:靶向胰岛素分泌细胞的线粒体DNA修复酶可提高细胞存活率,甘油代谢可保护链脲佐菌素诱导的一型糖尿病小鼠。

获取原文
获取原文并翻译 | 示例

摘要

Reactive oxygen species (ROS) can be highly reactive and damaging to macromolecules such as mitochondrial DNA (mtDNA) (Balaban et al., 2005). One of the interests in our lab is the increase in ROS during the progression of diabetes mellitus and the damaging effect this may have on mtDNA. For this work, we asked whether targeting mtDNA repair proteins to insulin secreting cells would protect these cells from oxidative DNA damage. In initial studies, an insulin secreting cell line (INS-1) was stably transfected with a plasmid coding for a mitochondrial targeted DNA repair enzyme. The repair enzymes used were either human 8-oxoguanine DNA glycosylase (hOGG1) or E. coli's Endonuclease III (EndoIII). The successful targeting of the hOGG1 repair enzyme resulted in increased DNA repair and enhanced cellular viability following oxidative stress. For the next experiments, the protein transduction domain (PTD) of the HIV-1 TAT protein was fused to E. coli's Endonuclease III DNA repair glycosylase (MTS-EndoIII-Tat). Primary rat beta cells that were treated with fusion protein showed a trend toward enhanced DNA repair following oxidative stress. For the final experiments, we used fusion protein in an animal model of type I diabetes. In this study, diabetes was induced in Balb/c mice using multiple low-dose (MLD) streptozotocin (STZ) treatment. Although the TAT-fusion protein did not appear to lower blood glucose in the STZ treated mice, the glycerol containing buffer treatment significantly lowered blood glucose. When the animals were treated with the metabolically inactive form of glycerol, 1, 3-propanediol, the animals were not protected from STZ treatment, suggesting that the glycerol was able to protect by increasing the metabolic activity within the beta cells. In conclusion, we found that targeting mitochondrial DNA repair proteins to insulin producing cells can enhance mtDNA repair and viability, and surprisingly, we found that glycerol is protective in a mouse model of type I diabetes.
机译:活性氧(ROS)可能具有很高的反应性,并且会对线粒体DNA(mtDNA)等大分子造成破坏(Balaban等,2005)。我们实验室的兴趣之一是在糖尿病进展过程中ROS的增加及其对mtDNA的破坏作用。对于这项工作,我们询问将mtDNA修复蛋白靶向胰岛素分泌细胞是否可以保护这些细胞免于氧化性DNA损伤。在最初的研究中,胰岛素分泌细胞系(INS-1)用编码线粒体靶向DNA修复酶的质粒稳定转染。使用的修复酶是人8-氧鸟嘌呤DNA糖基化酶(hOGG1)或大肠杆菌的核酸内切酶III(EndoIII)。 hOGG1修复酶的成功靶向导致氧化应激后DNA修复增加,细胞活力增强。对于下一个实验,将HIV-1 TAT蛋白的蛋白转导域(PTD)与大肠杆菌的核酸内切酶III DNA修复糖基化酶(MTS-EndoIII-Tat)融合。用融合蛋白处理的原代大鼠β细胞在氧化应激后显示出DNA修复增强的趋势。对于最终实验,我们在I型糖尿病动物模型中使用了融合蛋白。在这项研究中,使用多种低剂量(MLD)链脲佐菌素(STZ)治疗在Balb / c小鼠中诱发糖尿病。尽管TAT融合蛋白在STZ治疗的小鼠中似乎没有降低血糖,但是含甘油的缓冲液治疗显着降低了血糖。用无代谢活性形式的甘油1、3-丙二醇处理动物时,不能保护动物免受STZ处理,这表明甘油能够通过增加β细胞内的代谢活性来保护动物。总之,我们发现将线粒体DNA修复蛋白靶向产生胰岛素的细胞可以增强mtDNA修复和生存能力,并且令人惊讶地,我们发现甘油在I型糖尿病小鼠模型中具有保护作用。

著录项

  • 作者

    Snyder, Janet Waggoner.;

  • 作者单位

    University of South Alabama.;

  • 授予单位 University of South Alabama.;
  • 学科 Biology Cell.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 药物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号