首页> 外文学位 >Robust control methods for nonlinear systems with uncertain dynamics and unknown control direction.
【24h】

Robust control methods for nonlinear systems with uncertain dynamics and unknown control direction.

机译:具有不确定动力学和未知控制方向的非线性系统的鲁棒控制方法。

获取原文
获取原文并翻译 | 示例

摘要

Robust nonlinear control design strategies using sliding mode control (SMC) and integral SMC (ISMC) are developed, which are capable of achieving reliable and accurate tracking control for systems containing dynamic uncertainty, unmodeled disturbances, and actuator anomalies that result in an unknown and time-varying control direction. In order to ease readability of this dissertation, detailed explanations of the relevant mathematical tools is provided, including stability denitions, Lyapunov-based stability analysis methods, SMC and ISMC fundamentals, and other basic nonlinear control tools. The contributions of the dissertation are three novel control algorithms for three different classes of nonlinear systems: single-input multipleoutput (SIMO) systems, systems with model uncertainty and bounded disturbances, and systems with unknown control direction. Control design for SIMO systems is challenging due to the fact that such systems have fewer actuators than degrees of freedom to control (i.e., they are underactuated systems). While traditional nonlinear control methods can be utilized to design controllers for certain classes of cascaded underactuated systems, more advanced methods are required to develop controllers for parallel systems, which are not in a cascade structure. A novel control technique is proposed in this dissertation, which is shown to achieve asymptotic tracking for dual parallel systems, where a single scalar control input directly aects two subsystems. The result is achieved through an innovative sequential control design algorithm, whereby one of the subsystems is indirectly stabilized via the desired state trajectory that is commanded to the other subsystem. The SIMO system under consideration does not contain uncertainty or disturbances. In dealing with systems containing uncertainty in the dynamic model, a particularly challenging situation occurs when uncertainty exists in the input-multiplicative gain matrix. Moreover, special consideration is required in control design for systems that also include unknown bounded disturbances. To cope with these challenges, a robust continuous controller is developed using an ISMC technique, which achieves asymptotic trajectory tracking for systems with unknown bounded disturbances, while simultaneously compensating for parametric uncertainty in the input gain matrix. The ISMC design is rigorously proven to achieve asymptotic trajectory tracking for a quadrotor system and a synthetic jet actuator (SJA)-based aircraft system. In the ISMC designs, it is assumed that the signs in the uncertain input-multiplicative gain matrix (i.e., the actuator control directions) are known. A much more challenging scenario is encountered in designing controllers for classes of systems, where the uncertainty in the input gain matrix is extreme enough to result in an a priori-unknown control direction. Such a scenario can result when dealing with highly inaccurate dynamic models, unmodeled parameter variations, actuator anomalies, unknown external or internal disturbances, and/or other adversarial operating conditions. To address this challenge, a SMCbased self-recongurable control algorithm is presented, which automatically adjusts for unknown control direction via periodic switching between sliding manifolds that ultimately forces the state to a converging manifold. Rigorous mathematical analyses are presented to prove the theoretical results, and simulation results are provided to demonstrate the effectiveness of the three proposed control algorithms.
机译:开发了使用滑模控制(SMC)和积分SMC(ISMC)的鲁棒非线性控制设计策略,它们能够对包含动态不确定性,未建模干扰和致动器异常(导致未知时间)的系统实现可靠且准确的跟踪控制-改变控制方向。为了简化本文的可读性,提供了有关数学工具的详细说明,包括稳定性定义,基于Lyapunov的稳定性分析方法,SMC和ISMC基础以及其他基本的非线性控制工具。本文的研究成果是针对三种不同类型的非线性系统的三种新颖的控制算法:单输入多输出(SIMO)系统,具有模型不确定性和有界干扰的系统以及未知控制方向的系统。 SIMO系统的控制设计具有挑战性,这是因为此类系统的执行器少于控制的自由度(即,它们是驱动不足的系统)。虽然可以使用传统的非线性控制方法来设计用于某些类型的级联欠驱动系统的控制器,但是需要更高级的方法来开发用于不在级联结构中的并行系统的控制器。本文提出了一种新颖的控制技术,该技术被证明可以实现双并行系统的渐近跟踪,其中单个标量控制输入直接影响两个子系统。通过创新的顺序控制设计算法可以达到该结果,其中一个子系统通过命令给另一个子系统的所需状态轨迹间接稳定下来。所考虑的SIMO系统不包含不确定性或干扰。在处理动态模型中包含不确定性的系统时,当输入乘法增益矩阵中存在不确定性时,会发生特别具有挑战性的情况。此外,对于还包括未知有界干扰的系统,在控制设计中需要特别考虑。为了应对这些挑战,使用ISMC技术开发了一种鲁棒的连续控制器,该控制器为具有未知边界扰动的系统实现了渐近轨迹跟踪,同时补偿了输入增益矩阵中的参数不确定性。 ISMC设计经过严格验证,可为四旋翼系统和基于合成喷射执行器(SJA)的飞机系统实现渐近轨迹跟踪。在ISMC设计中,假设不确定输入-乘法增益矩阵中的符号(即致动器控制方向)是已知的。在为系统类别设计控制器时遇到了更具挑战性的情况,其中输入增益矩阵中的不确定性非常大,足以导致先验未知的控制方向。当处理高度不准确的动态模型,未建模的参数变化,执行器异常,未知的外部或内部干扰和/或其他对抗性操作条件时,可能会导致这种情况。为了解决这一挑战,提出了一种基于SMC的自重构控制算法,该算法通过在滑动歧管之间进行周期性切换来自动调整未知控制方向,最终将状态强制为收敛歧管。进行了严格的数学分析以证明理论结果,并提供了仿真结果以证明所提出的三种控制算法的有效性。

著录项

  • 作者

    Ton, Chau T.;

  • 作者单位

    Embry-Riddle Aeronautical University.;

  • 授予单位 Embry-Riddle Aeronautical University.;
  • 学科 Engineering General.;Engineering System Science.;Physics General.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号