首页> 外文学位 >A flexible hierarchical model-based control methodology for vehicle active safety systems.
【24h】

A flexible hierarchical model-based control methodology for vehicle active safety systems.

机译:用于车辆主动安全系统的灵活的基于层次模型的控制方法。

获取原文
获取原文并翻译 | 示例

摘要

To improve the stability and safety performance of active safety systems, vehicle control systems are increasingly incorporating sophisticated chassis actuator control functions. Thus vehicle control systems require efficient control algorithms to reduce the amount of duplicate hardware or adopt various actuator combinations in response to diverse customer demands and various hardware combinations from different suppliers. One of the main challenges for efficient controller design is how to create a flexible modular design which can respond to different reference vehicle behaviors and provide optimal actuator apportionment, while avoiding functional conflicts between chassis subsystems.; The proposed control methodology offers a total vehicle motion control solution for an active safety system by addressing the issue of flexible modular design in integrated vehicle control systems. In this thesis, modularity is realized by a model-based hierarchical control structure consisting of three layers: an upper layer for reference vehicle motions, an intermediate layer for actuator apportionment, and a lower layer for stand-alone actuator control. The reference vehicle motions can be determined by any type of reference model for vehicle stability control or collision avoidance control. The actuator apportionment uses Model Predictive Control (MPC) to provide flexibility by balancing tire forces to track target reference vehicle motions while simultaneously considering constrained conditions, such as actuator limits or available actuator combinations. Moreover, the MPC is designed to be feasible in real-time using a linear time-varying MPC approach which avoids the complexity of full nonlinear MPC and addresses the vehicle nonlinearity.; The effectiveness of the proposed control structure is investigated for vehicle stability control in terms of handling stability and handling responsiveness. The handing stability and responsiveness of the control structure appear to be robust with respect to various uncertain environments including model-plant mismatch and diverse driving conditions. It is then applied to collision avoidance systems by adapting the reference vehicle motions at the upper level of the controller. Collision avoidance is found to be nearly as effective as that of the combination of an optimizing driver supported by the MPC-based stability controller; this suggests that the MPC approach could be used in future high performance collision avoidance systems.
机译:为了提高主动安全系统的稳定性和安全性能,车辆控制系统越来越多地包含复杂的底盘致动器控制功能。因此,车辆控制系统需要有效的控制算法来减少重复硬件的数量或响应于不同的客户需求和来自不同供应商的各种硬件组合而采用各种执行器组合。有效的控制器设计的主要挑战之一是如何创建一种灵活的模块化设计,该设计能够响应不同的参考车辆行为并提供最佳的执行器分配,同时又避免了底盘子系统之间的功能冲突。通过解决集成车辆控制系统中灵活的模块化设计问题,所提出的控制方法为主动安全系统提供了完整的车辆运动控制解决方案。在本文中,模块化是通过基于模型的分层控制结构实现的,该结构包括三层:用于参考车辆运动的上层,用于执行器分配的中间层和用于独立执行器控制的下层。可以通过用于车辆稳定性控制或避免碰撞控制的任何类型的参考模型来确定参考车辆运动。执行器分配使用模型预测控制(MPC)通过平衡轮胎力来跟踪目标参考车辆运动来提供灵活性,同时考虑约束条件,例如执行器极限或可用的执行器组合。此外,MPC被设计为使用线性时变MPC方法实时可行,从而避免了完全非线性MPC的复杂性并解决了车辆的非线性问题。就操纵稳定性和操纵响应性而言,研究了所提出的控制结构对车辆稳定性控制的有效性。对于各种不确定的环境,包括模型工厂不匹配和各种驾驶条件,控制结构的操纵稳定性和响应能力似乎很强健。然后通过在控制器的上层调整参考车辆运动将其应用于避免碰撞系统。避免碰撞与基于MPC的稳定性控制器支持的优化驱动程序的组合几乎一样有效。这表明,MPC方法可用于未来的高性能防撞系统。

著录项

  • 作者

    Chang, Sehyun.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号