首页> 外文学位 >H-, p- and t-refinement strategies for the finite-difference-time-domain (FDTD) method developed via finite-element (FE) principles.
【24h】

H-, p- and t-refinement strategies for the finite-difference-time-domain (FDTD) method developed via finite-element (FE) principles.

机译:通过有限元(FE)原理开发的有限差分时域(FDTD)方法的H,p和t细化策略。

获取原文
获取原文并翻译 | 示例

摘要

In this research, several improvements to the FDTD method are implemented by recasting it as a mixed Whitney-form finite-element method. This step permits the application of numerous advancements developed by the finite element community, such as non-uniform nested refinement schemes and higher order Nedelec-type basis functions. The first improvement is h-refinement, a method for abutting disjoint grids with distinct edge lengths (commonly referred to as "subgridding"). This overcomes one of the major disadvantages of the FDTD method: its restriction to uniform sample resolution regardless of physical local feature size. With this improvement, field singularities can be modeled with greater fidelity and stair-casing error can be reduced for geometries with curved features for local instead of global cost. Another improvement explored herein is the development of higher order accurate FDTD-like methods, by replacing the collections of Yee cells with "Lobatto cells" which support mixed order Lagrange polynomial finite elements. Unlike traditional high order finite-difference schemes, the proposed Lobatto cell maintains high order accuracy at material interfaces and metal wall boundaries. These methods have superior geometrical fidelity and dispersion characteristics over the typical Yee method. Both the subgridding and high order improvements inherit the Yee's schemes famous robustness by construction: they are provably energy conserving, electric charge conserving and magnetic charge conserving. When integrated in time with the leapfrog method, both can also be proven conditionally stable for some nonzero timestep. Additional work will present an algorithm for interfacing grids with completely discontinuous basis functions, and investigate more exotic multirate leapfrogging schemes. Both of these concepts are crucial for general adaptive hp-refinement, where abutting grids might be refined in unpredictable ways. All methods are verified on canonical problems in electromagnetism and compared to existing alternative algorithms. The ultimate aim, though beyond the scope of this work, is to develop automatic adaptive refinement capability for the FDTD method. This work lays the foundation for those developments.
机译:在这项研究中,通过将FDTD方法重铸为混合的Whitney形式的有限元方法,实现了FDTD方法的一些改进。此步骤允许应用由有限元社区开发的许多改进,例如非均匀嵌套改进方案和高阶Nedelec类型基函数。第一个改进是h-refinement,这是一种用于邻接具有不同边缘长度的不相交网格的方法(通常称为“子网格”)。这克服了FDTD方法的主要缺点之一:无论物理局部特征的大小如何,它都限制了统一的样品分辨率。通过此改进,可以对具有奇异特征的场奇异度进行建模,并且对于具有弧形特征的几何形状,可以减少局部浇筑的误差,而无需考虑整体成本。本文探讨的另一种改进是通过用支持混合阶Lagrange多项式有限元的“ Lobatto细胞”代替Yee细胞的集合,开发出更高精确度的类似于FDTD的方法。与传统的高阶有限差分方案不同,建议的Lobatto单元在材料界面和金属壁边界处保持高阶精度。与典型的Yee方法相比,这些方法具有出色的几何保真度和色散特性。子网格和高阶改进都继承了Yee方案在构造上的强健性:可证明是节能,节省电荷和节省磁力的。如果将时间跨度与跳越方法集成在一起,那么对于某些非零时间步长,这两个条件也可以被证明是稳定的。额外的工作将提出一种将网格与完全不连续的基函数接口的算法,并研究更多奇异的多速率越级方案。这两个概念对于一般的自适应hp精炼都是至关重要的,在这种情况下,相邻网格可能会以无法预测的方式精炼。所有方法都针对电磁学中的规范问题进行了验证,并与现有的替代算法进行了比较。尽管超出了本研究的范围,但最终目的是为FDTD方法开发自动自适应优化功能。这项工作为这些发展奠定了基础。

著录项

  • 作者

    Chilton, Ryan A.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号