首页> 外文学位 >Synthesis and verification of digital circuits using functional simulation and Boolean satisfiability.
【24h】

Synthesis and verification of digital circuits using functional simulation and Boolean satisfiability.

机译:使用功能仿真和布尔可满足性对数字电路进行综合和验证。

获取原文
获取原文并翻译 | 示例

摘要

The semiconductor industry has long relied on the steady trend of transistor scaling, that is, the shrinking of the dimensions of silicon transistor devices, as a way to improve the cost and performance of electronic devices. However, several design challenges have emerged as transistors have become smaller. For instance, wires are not scaling as fast as transistors, and delay associated with wires is becoming more significant. Moreover, in the design flow for integrated circuits, accurate modeling of wire-related delay is available only toward the end of the design process, when the physical placement of logic units is known. Consequently, one can only know whether timing performance objectives are satisfied, i.e., if timing closure is achieved, after several design optimizations. Unless timing closure is achieved, expensive and time-consuming design-flow iterations are required. Given the challenges arising from increasingly complex designs, failing to quickly achieve timing closure threatens the ability of designers to produce high-performance chips that can match continually growing consumer demands.;In this dissertation, we introduce powerful constraint-guided synthesis optimizations that take into account upcoming timing closure challenges and eliminate expensive design iterations. In particular, we use logic simulation to approximate the behavior of increasingly complex designs leveraging a recently proposed concept, called signatures, which allows us to represent a large fraction of a complex circuit's behavior in a compact data structure. By manipulating these signatures, we can efficiently discover a greater set of valid logic transformations than was previously possible and, as a result, enhance timing optimization. Based on the abstractions enabled through signatures, we propose a comprehensive suite of novel techniques: (1) a fast computation of circuit don't cares that increases restructuring opportunities, (2) a verification methodology to prove the correctness of speculative optimizations that efficiently utilizes the computational power of modern multi-core systems, and (3) a physical synthesis strategy using signatures that re-implements sections of a critical path while minimizing perturbations to the existing placement. Our results indicate that logic simulation is effective in approximating the behavior of complex designs and enables a broader family of optimizations than previous synthesis approaches.
机译:半导体行业长期以来一直依靠晶体管规模缩小的稳定趋势,即硅晶体管器件尺寸的缩小,以此来提高电子器件的成本和性能。然而,随着晶体管变得越来越小,出现了一些设计挑战。例如,导线的缩放速度不及晶体管,并且与导线相关的延迟变得越来越重要。此外,在集成电路的设计流程中,只有在知道逻辑单元的物理位置时,才可以在接近设计过程的最后对导线相关的延迟进行精确建模。因此,经过几次设计优化后,人们只能知道是否满足时序性能目标,即是否达到时序收敛。除非实现时序收敛,否则需要昂贵且耗时的设计流程迭代。鉴于日益复杂的设计所带来的挑战,未能快速实现时序收敛会威胁设计人员生产可满足不断增长的消费者需求的高性能芯片的能力。本文将引入强大的约束导向综合优化解决了即将到来的时序收敛挑战并消除了昂贵的设计迭代。特别是,我们利用逻辑仿真来利用最近提出的称为签名的概念来近似化日益复杂的设计的行为,这使我们能够在紧凑的数据结构中表示复杂电路行为的很大一部分。通过操纵这些签名,我们可以有效地发现比以前可能的更多的有效逻辑转换集,从而增强时序优化。基于通过签名实现的抽象,我们提出了一套全面的新颖技术:(1)电路的快速计算无关紧要,这会增加重组机会;(2)一种验证方法,用以证明有效利用投机性优化的正确性(3)使用签名的物理综合策略,该签名重新实现了关键路径的各个部分,同时最大程度地减少了对现有布局的干扰。我们的结果表明,逻辑仿真可以有效地逼近复杂设计的行为,并且比以前的综合方法能够实现更广泛的优化系列。

著录项

  • 作者

    Plaza, Stephen M.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号