首页> 中文学位 >基于遥感与DEM的“吉兰泰-河套”古大湖重建研究
【6h】

基于遥感与DEM的“吉兰泰-河套”古大湖重建研究

代理获取

目录

文摘

英文文摘

论文说明:图表目录

声明

第一章绪论

第一节湖泊演化遥感研究进展

1国外湖泊演化遥感研究进展

2国内湖泊演化遥感研究进展

第二节研究区现代自然地理概况

1吉兰泰盐湖

2河套地区

第三节晚第四纪环境变化研究进展

1中国西部晚第四纪环境变化研究概述

2研究区晚第四纪环境变化研究进展

第四节选题依据与拟解决的关键问题

1选题依据及意义

2拟解决的关键问题

第二章基于遥感和DEM的古大湖重建研究方法

第一节概况

第二节数据源及数据处理分析技术

1数据源介绍

2数据处理与分析技术

第三节野外考察与差分GPS测量

1野外考察

2差分GPS测量

第四节遥感影像解译

第三章古湖演化的影像解译

第一节古湖岸堤影像解译与野外验证

1古湖岸堤的解译标志

2古湖岸堤的解译结果

3古湖岸堤的野外验证

第二节古冲积扇及古河道的影像解译

1古冲积扇的影像解译

2古河道的影像解译

第三节基于DEM的“吉兰泰-河套”古大湖的空间信息

1现代地形条件下“吉兰泰-河套”古大湖的空间信息

2“吉兰泰-河套”古大湖湖盆形态的恢复

第四节山前冲洪积扇及断裂的影像解译

1山前冲洪积扇的解译

2断裂构造的解译

第四章“吉兰泰-河套”古大湖的空间演化

第一节“吉兰泰-河套”古大湖的空间演化

1 60~50 ka之前的“吉兰泰-河套”古大湖阶段(1070~1080m)

2 40ka之前的“吉兰泰-河套”古湖阶段(1060m)

3 22 ka之前的“吉兰泰-河套”古湖阶段(1050m)

4早全新世“吉兰泰”古湖阶段(1045m、1035m)

5晚全新世吉兰泰盐湖阶段

第二节历史时期水系格局的变迁

1战国到东晋十六国时期(前475~439年)

2北魏(386~534年)至明代(1368~1644年)

3清时期(1644~1908年)

4现代

第三节历史时期屠申泽的演化

第五章“吉兰泰-河套”古大湖形成机制探讨

第一节构造活动与“吉兰泰-河套”古大湖的关系

1狼山—色尔腾山山前断裂带

2乌拉山山前断裂带

3大青山山前断裂带

4和林格尔断裂带

5鄂尔多斯北缘断裂带

6吉兰泰盐湖周围系列断裂带

第二节水系变迁与“吉兰泰-河套”古大湖的关系

第三节气候变化与“吉兰泰-河套”古大湖的关系

第四节“吉兰泰-河套”古大湖水量平衡的初步计算与分析

1水量平衡原理与通用方程

2古大湖水量平衡计算的假设及模型

3古大湖水量平衡的计算与分析

4模型中存在的问题及模型改进的一些设想

第六章主要结论与存在的问题

第一节主要结论

第二节问题与展望

参考文献

个人简历及在读期间科研项目和成果

致谢

展开▼

摘要

吉兰泰盐湖位于内蒙古自治区阿拉善左旗吉兰泰镇(39°36’~39°42’N,105°35’~105°45’E),多年平均降水量108.89 mm,多年平均蒸发量2954.00mm,气候干旱,植被稀少,沙漠化严重。河套盆地位于内蒙古西部(39°20’~41°20’N,106°~112°E),北至阴山脚下,南临鄂尔多斯高原北面的库布齐沙漠边缘,西接乌兰布和沙漠,东及东南与蛮汗山山前丘陵及和林格尔丘陵相接。年降水量大部地区介于150~400 mm之间,年蒸发量介于2000~2800 mm之间。从构造上看,吉兰泰断陷盆地隶属于河套断陷盆地的一部分,河套断陷盆地是介于南部的鄂尔多斯隆起和北部的阴山隆起之间的新生代断陷盆地,盆地中心沉积了巨厚的第四系湖相沉积,现代黄河自西而东穿过河套盆地。 位于季风与西风过渡带的吉兰泰-河套地区,生态环境极其脆弱,对气候变化反映敏感,第四纪地层中记录着丰富的环境变化信息。前人根据吉兰泰-河套地区若干地点发现的湖岸堤、湖相地层提出可能存在“吉兰泰古湖”、“河套古湖”。但是,吉兰泰和河套地区是否存在统一的巨大古湖是一个值得深入研究的、重大的区域环境问题,目前尚缺乏系统的研究。本研究充分利用现代遥感技术的特点与优势,以多源遥感影像数据作为切入点,结合野外地质、地貌考察和差分GPS测高,系统研究了该区域湖滨地貌的空间分布。同时,结合OSL测年结果,基于SRTM DEM数据,利用GIS空间分析手段重建了不同时期古大湖的空间信息,探讨了各主要时段“吉兰泰-河套”古大湖空间演化的过程以及历史时期水系格局的变迁。在此基础上,利用水量平衡模型,初步计算和分析了古大湖发育时期的入湖径流量,以期为理解“吉兰泰-河套”古大湖的演化历史及过程提供科学依据,为了解该区域环境变化的历史及水资源的合理开发与利用提供参考资料。本研究所取得的主要结论如下: 1、利用NASA Astronaut Photographs、Landsat-7 ETM+影像,在三维可视化技术的支持下,判读出了吉兰泰-河套地区一系列的古湖岸堤、古冲积扇、古河道及断裂构造等信息,为研究“吉兰泰-河套”古大湖的空间演化提供了第一手的基础资料。影像判读表明: (1)古湖岸堤呈线状(或条带状)的影像特征,以吉兰泰盐湖周围保存最为完整。根据DGPS测量和DEM数据的分析,吉兰泰-河套地区的古湖岸堤共分五级,即1070~1080 m、1060 m、1050 m、1044 m和1035 m。高出现代盐湖47~57 m(海拔1070~1080 m)的古湖岸堤,是该地区保存的最高湖面遗迹,在盐湖西南道扣梁以南和盐湖西部剖面S32~S34之间保存较为完整;海拔1060 m的古湖岸堤主要分布于盐湖西部至西北,延续性较好,长度超过20 km,仅个别部位为沟谷冲断,实测宽度在100 m以上;海拔1050 m的古湖岸堤主要分布于盐湖西北、西部和西南道扣梁一带,延续性好,在盐湖西北长度达20 km以上,实测宽度在100 m以上。在道扣梁一带,长度约10 km以上,实测宽度6~9 m。遥感影像明确揭示,盐湖西北两条并行的主湖岸堤中均包含有次一级的湖岸堤;海拔1044m和1035m的古湖岸堤主要分布于盐湖西部,长度有限,均不超过3km。在吉兰泰盐湖西岸的南砂场和乌兰布和沙漠腹地的贺日木西尼发育古砂嘴,以贺日木西尼古砂嘴影像特征最为明显。该砂嘴长约11 km,实测顶部宽约5m,最宽处可达30 m,砂嘴顶部比两侧高出3~10 m,海拔从1050 m降低到1035m,顶面平坦笔直,近岸边呈现典型的“V”字型特征; (2)吉兰泰-河套地区存在三个古冲积扇,乌兰布和沙漠北部和后套平原西部地区的两个古冲积扇规模较大,南扇地面坡降大于北扇。南、北冲积扇上不同时期、不同流向的古河道相互重叠、交叉。南冲积扇上的古河道近南北向展布,北冲积扇及五原一带则逐渐转为近东西方向。古河道在ETM+543合成影像上呈蓝黑色或鲜绿色的条带,形态特征多种多样,以后套地区影像特征最为明显。在巴音木仁(旧磴口)以西可能存在一个更老的古冲积扇; (3)河套盆地周缘断裂构造非常发育,以NE(NEE)、EW方向为主。盆地北缘一线主要存在狼山-色尔腾山山前断裂带、乌拉山山前断裂带、大青山山前断裂带,断层陡坎、断层崖、断层三角面等沿断裂带广泛发育,影像特征非常明显。盆地南缘受控于鄂尔多斯北缘断裂带及和林格尔断裂带,影像特征也比较明显。吉兰泰盐湖周围的断裂带比较发育,以NE和SN方向为主。 2、建立了吉兰泰-河套地区的数字高程模型,该模型精确地再现了吉兰泰-河套地区的地形地貌特征。通过DEM分析并结合OSL测年表明,60~50ka以来,吉兰泰-河套地区经历了四次高湖面时期,即60~50ka之前、40ka之前、22ka之前以及早全新世。在60~50ka之前的最高湖面阶段(海拔1080m),“吉兰泰-河套”古大湖湖域辽阔,西至吉兰泰盐湖西南,东到呼和浩特以东,南以鄂尔多斯高原北缘为界,北至巴彦乌拉山-狼山-色尔腾山-乌拉山-大青山南麓一线,包括现今的乌兰布和沙漠与库布齐沙漠的大部分地区。现代地形条件下的平均深度约50m,湖泊面积约34757km2,整个湖盆容积可达6000 km3;在MIS3晚期的高湖面时期(海拔1060m、1050 m),现代地形条件下的平均水深介于32~25 m,古湖面积介于30 818~28 121 km2之间,整个吉兰泰-河套地区仍为一个统一大湖;进入全新世以来,在全新世早期虽然出现了又一次的高湖面,但现有证据表明,湖泊仅局限于吉兰泰盐湖周围及贺日木西尼一带;晚全新世时,吉兰泰地区已进入盐湖阶段,流沙侵湖,并迅速呈现出沙下盐湖的特征。从湖面退缩的空间过程来看,古大湖北缘沿巴彦乌拉山-狼山-色尔腾山-乌拉山-大青山南缘一线直到22 ka之前变化不明显,东部边缘、西南边缘退缩比较明显,退缩最严重的区域在鄂尔多斯高原西北缘; 3、基于遥感影像并参考前人研究成果,确认出乌兰布和沙漠北部地区遥感影像上形似小鸟的区域为西汉至北魏时期屠申泽所在。该古湖湖口大致位于隆盛合到东海子附近,南大致以海子岗到东海子一线为界,北缘大致位于王外生苑旦到杨三圪旦一线附近,古湖面积约450 km2,东西长约40 km。南北最宽约18 km左右。屠申泽形成于西汉之前,在其鼎盛时期可能覆盖了整个乌兰布和沙漠北部地区,范围是西汉至北魏时期的8-9倍以上。根据文献记载描述的历史时期河套段黄河从北向南、从西向东的变迁过程,尤其是清代河道的变迁过程,在遥感影像上得到了忠实的记录和反映; 4、初步探讨了构造活动、水系变迁及气候变化在“吉兰泰-河套”古大湖形成演化过程中的作用。研究表明,第四纪以来,吉兰泰地区构造活动相对稳定,而河套地区构造活动非常强烈,高湖面的形成很可能受控于区域造陆隆起和局部构造变形。剔除构造抬升的影响,60~50 ka之前古大湖的水位介于1080 m~1050 m之间,面积约30 000 km2左右,吉兰泰-河套地区仍为统一大湖所覆盖;区域对比发现,“吉兰泰-河套”古大湖的高湖面记录与青藏高原区的“泛湖面”(溢流面)具有非常好的一致性,与古里雅冰芯、深海氧同位素曲线、北半球太阳辐射量曲线及洛川剖面的磁化率曲线具有较好的一致性。40 ka之前、22ka之前和全新世早期的高湖面与古里雅冰芯及深海氧同位素阶段所反映的暖期基本一致,尤其是与古里雅冰芯的对比较为一致,60~50ka之前的高湖面与氧同位素的低谷相一致,可能反映在暖期后冰水融化而形成的高湖面;晚第四纪以来多次高湖面的形成,很可能是截留了黄河水,黄河很可能外流减少或停止以至成为内流河才使湖面能够保持稳定; 5、根据水量平衡模型,以研究区现代的降水量、蒸发量为参考,通过子区划分赋权重的方法,初步地计算了古大湖发育时期的入湖径流量。结果表明,60~50 ka之前“吉兰泰-河套”古大湖发育时期,年入湖径流量约为420.55×108m3,其中黄河年入湖径流量达410×108m3以上。由于当时气温较低,降水较高,从而使古大湖的水位在海拔1080 m左右维持着一种动态平衡; 6、研究证明,遥感技术在湖泊演化研究中具有独特的优势。与单源遥感影像数据相比,多源遥感影像数据所提供的信息具有互补性和合作性,在古湖演化研究中可以取长补短,提供更加全面的信息。将遥感技术、数字高程模型及GIS技术运用于古湖演化研究中,具有精度高、速度快、信息全面的特点,利于大区域研究和宏观规律的把握,同时还可以实现古湖演化的可视化和定量化,是研究湖泊演化极为有效和值得推广的方法之一。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号