首页> 外文会议>Proceedings of 12th International Conference BIOMDLORE 2018 >Flow-Induced Accumulations of Von Willebrand Factor Inside Oxygenators During Extracorporeal Life Support Therapy
【24h】

Flow-Induced Accumulations of Von Willebrand Factor Inside Oxygenators During Extracorporeal Life Support Therapy

机译:体外生命维持治疗过程中,充氧器内血管性假血友病因子的流量诱导累积

获取原文
获取原文并翻译 | 示例

摘要

BACKGROUND: Shear-induced conformational changes of von Willebrand factor (vWF) may be responsible for coagulation disorder and clot formation inside membrane oxygenators (MOs) during extracorporeal membrane oxygenation (ECMO) therapy. OBJECTIVE: The aim was to identify vWF structures inside clinically used MOs and employ computational fluid dynamics to verify the corresponding flow conditions. METHODS: Samples from gas exchange membranes (GEM) from MOs were analysed for accumulations of vWF and P-selectin-positive platelets using immunofluorescence techniques. Streamlines and shear rates of the flow around GEMs were computed using a laminar steady Reynolds-Averaged-Navier-Stokes approach. RESULTS: Most samples were colonized with equally distributed leukocytes, integrated in thin cobweb-like vWF-structures. Only 25 % of the samples showed extended accumulations of vWF. Computed streamlines showed considerable cross flow between interconnected neighbouring channels. Stagnation points were non-symmetric and contact faces were washed around closely. The occurring maximum shear rates ranged from 2,500 to 3,000 1/s. CONCLUSIONS: If pronounced vWF structures are present, shape and extent match the flow computations well. Computed shear rates bear a critical degree of uncertainty due to the improper viscosity model. If flow conditions inside the MO were sufficient to affect vWF, a more consistent distribution of vWF across the samples should be present.
机译:背景:剪切诱导的von Willebrand因子(vWF)的构象变化可能是体外膜氧合(ECMO)治疗期间膜氧合器(MO)内的凝血障碍和血凝块形成的原因。目的:目的是识别临床使用的MOs内的vWF结构,并利用计算流体动力学来验证相应的流动条件。方法:使用免疫荧光技术分析来自MOs的气体交换膜(GEM)的样品中vWF和P-selectin阳性血小板的积累。使用层流稳定的雷诺-平均-纳维-斯托克斯方法计算出围绕GEM的流线和剪切速率。结果:大多数样品定植于均匀分布的白细胞中,并整合在薄的蜘蛛网状vWF结构中。只有25%的样品显示vWF的累积积累。计算得到的流线显示出相互连接的相邻通道之间有相当大的错流。停滞点是不对称的,接触面应紧密冲洗。发生的最大剪切速率范围为2500至3,000 1 / s。结论:如果存在明显的vWF结构,则形状和范围与流量计算非常匹配。由于不正确的粘度模型,计算的剪切速率具有严重的不确定性。如果MO内部的流动条件足以影响vWF,则应在样品之间呈现vWF更加一致的分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号