首页> 外文会议>SPE Hydraulic Fracturing Technology Conference >Theoretical and Numerical Simulation of Herschel-Bulkley Fluid Flow in Propped Fractures
【24h】

Theoretical and Numerical Simulation of Herschel-Bulkley Fluid Flow in Propped Fractures

机译:Herschel-Bulkley流体流动裂缝中的理论与数值模拟

获取原文

摘要

The flow of non-Newtonian fluids in porous media is important in many applications, such as polymer processing, heavy oil flow, and gel cleanup in propped fractures. Residual polymer gel in propped fractures results in low fracture conductivity and short effective fracture length, sometimes causing severe productivity impairment of a hydraulically fractured well. But non- Newtonian fluid flow behavior in porous media is difficult to be described and modeled. The Kozeny-Carman equation, a traditional permeability-porosity relationship, has been popularly used in porous media flow models. However, this relationship is not suitable for non-Newtonian fluid flow in porous media. The aim of this work is to use a combination of 3D finite volume simulation and analytical calculations to develop a comprehensive model of Herschel-Bulkley non-Newtonian fluid flow through porous media. We present the mathematical model development, and then modify the model based on numerical simulation results. In the simulations, we developed a micro pore-scale model to mimic the real porous structure. The correlation of pressure gradient and superficial velocity was investigated under the influence of primary parameters, such as yield stress, power law index, consistency index, and proppant diameter. The Herschel-Bulkley model was used with an appropriate modification proposed by Papanastasiou to avoid the discontinuity of the apparent viscosity and numerical difficulties. The result of the new model indicates that yield stress has a significant impact on non-Newtonian fluid flow through porous media. The analytical expression reveals the physical principles for flow velocity in porous media, and the variation trends of the threshold pressure gradient versus different influence factors are shown. By Computational Fluid Dynamics (CFD), we obtained a detailed view of streamlines, the velocity field, and the pressure distribution in porous media. Numerical calculation results show that, in the center of the throats of porous media, the increasing yield stress widens the central plug-like flow region, and the increasing power law index sharpens the velocity profile. The new model can be readily applied to provide a clear guide to selection of fracture fluid, and can be easily incorporated into any existing reservoir simulators.
机译:多孔介质中的非牛顿液体流动在许多应用中是重要的,例如聚合物加工,重油流动和凝胶清除在支撑裂缝中。在支撑裂缝中残留的聚合物凝胶导致低断裂导电性和短的有效性裂缝长度,有时会导致液压骨折的严重生产率损害。但是难以描述和建模多孔介质中的非牛顿流体流动。 Kozeny-Carman方程,传统的渗透性 - 孔隙率关系普遍用于多孔介质流动模型。然而,这种关系不适用于多孔介质中的非牛顿流体流动。这项工作的目的是使用3D有限卷仿真和分析计算的组合来开发通过多孔介质的Herschel-Bulkley非牛顿流体流动综合模型。我们提出了数学模型的开发,然后根据数值模拟结果修改模型。在模拟中,我们开发了一种微孔级模型来模仿真正的多孔结构。在初级参数的影响下研究了压力梯度和浅表速度的相关性,例如屈服应力,动力法指数,一致性指数和支撑剂直径。 Herschel-Bulkley模型用于Papanastasiou提出的适当修改,以避免表观粘度和数值困难的不连续性。新模型的结果表明,屈服应力对通过多孔介质产生了对非牛顿流体流动的显着影响。分析表达显示了多孔介质中的流速的物理原理,并且示出了阈值压力梯度与不同影响因子的变化趋势。通过计算流体动力学(CFD),我们获得了流动线,速度场和多孔介质中的压力分布的详细视图。数值计算结果表明,在多孔介质的喉部的中心,屈服应力的增加扩大了中央插塞流区域,并且增加的动力法指数锐化速度曲线。可以很容易地应用新模型以提供清晰的裂缝液选择指南,并且可以容易地结合到任何现有的储层模拟器中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号