首页> 外文会议>International Petroleum Technology Conference >Optimal Fracture Spacing of a Hydraulically Fractured Horizontal Wellbore to Induce Complex Fractures in a Reservoir Under High In-Situ Stress Anisotropy
【24h】

Optimal Fracture Spacing of a Hydraulically Fractured Horizontal Wellbore to Induce Complex Fractures in a Reservoir Under High In-Situ Stress Anisotropy

机译:液压断裂水平井筒的最佳断裂间隔,在高原位应激各向异性下诱导储层中复杂骨折

获取原文

摘要

It has been generally accepted that creating complex fracture networks by hydraulic fracturing is one of the most efficient ways to produce gas from shale gas reservoirs. Although several factors affect development of complex fracture networks, the in-situ stress anisotropy (i.e. maximum in-situ horizontal stress - minimum in-situ horizontal stress) is the most significant factor. Low in-situ stress anisotropy increases the chance of creating complex fracture networks by hydraulic fracturing while high in-situ stress anisotropy reduces the likelihood of complex fracturing. In order to compensate for high in-situ stress anisotropy without drilling additional wellbores, M.Y. Soliman suggested using a fracturing method referred to as the Texas Two Step Method (TTSM). The method rearranges the sequence of fracturing stages to make use of the induced stress contrast caused by the net fracturing pressure. In this paper, the author has reviewed previously published assumptions with regard to the above method, and has concluded that certain assumptions may not be realistic, e.g., the interaction among propagating fractures were not thoroughly considered. To analyze the effectiveness of TTSM, this research has developed numerical codes using the Discontinuous Displacement Method (DDM). Through this research, certain critical characteristics related to fracture geometries are shown to be affected through interaction among multiple hydraulic fractures. The effect of these critical characteristics on the TTSM predictions for optimal fracture spacing of multistage fracturing operations is presented. From the results, it is concluded that curved fractures can increase or reduce the stress contrast induced by the net fracturing pressure, depending on the shape of the curved fractures. This paper further introduces a simple and general formula to calculate the optimal fracture spacing for TTSM.
机译:人们普遍认为,通过液压压裂创造复杂的骨折网络是从页岩气藏生产气体的最有效的方法之一。虽然有几个因素影响复杂骨折网络的发展,但原位应力各向异性(即最大原位水平应力 - 最小的原位水平应力)是最重要的因素。低原位应力各向异性通过液压压裂产生复杂骨折网络的可能性,而高原位应力各向异性降低复杂压裂的可能性。为了弥补高原位应力各向异性,而不会钻取额外的井筒,M.Y. Soliman建议使用压裂方法称为德克萨斯州两步方法(TTSM)。该方法重新排列压裂阶段的序列,以利用由净压裂压力引起的诱导应力对比。在本文中,作者审查了关于上述方法的先前公布的假设,并得出结论,某些假设可能不是现实的,例如,不彻底考虑传播骨折之间的相互作用。为了分析TTSM的有效性,该研究采用了不连续位移方法(DDM)开发了数值码。通过该研究,与骨折几何形状相关的某些关键特征被显示为通过多个液压骨折之间的相互作用而受到影响。提出了这些关键特性对多级压裂操作的最佳断裂间距的TTSM预测的影响。从结果中,得出结论,弯曲骨折可以增加或降低净压裂压力引起的应力对比,这取决于弯曲骨折的形状。本文进一步引入了一种简单且通式的公式,以计算TTSM的最佳断裂间隔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号