首页> 外文会议>International Petroleum Technology Conference >Extracting Physical Properties from Thin Section: Another Neural Network Contribution in Rock Physics
【24h】

Extracting Physical Properties from Thin Section: Another Neural Network Contribution in Rock Physics

机译:从薄部分提取物理性质:岩石物理中的另一个神经网络贡献

获取原文

摘要

Thin section observation is generally carried out to study the petrographic properties of a rock e.g; pores or grain shapes, sizes, distribution, pore connectivity, or eventually 2D optical porosity of the rock. In this paper wider use of thin section analysis is explored to tell more about the physical properties of rock. This work is purely computer- aided theoretical modeling, in which from thin section image, the effective values of elastic, electrical, and thermal properties are drawn based on the existing rock physics models. Stained and pore impregnated carbonate thin section which is partially saturated by heavy oil is used in this study. The pattern recognition algorithm of artificial neural network is employed as the rock constituent classfier in this work. It is programmed to replace the RGB pixel value of each constituent with known elastic, electric, and thermal properties value. In other word, it generates the distribution (map) of acoustic velocity and density, electrical conductivity and dielectric permittivity, and thermal conductivity in the thin section image. Values assigned to generate the map are obtained from known physical constants of minerals obtained in rock physics literature. From the generated map, pixel manipulation is performed to compute the fraction of the constituents and other properties of the rock (e.g. porosity, mineral composition). These results are then used to estimate the effective value of those physical properties. The estimation is performed by using theoretical rock physics models e.g. Voigt-Reuss-Hill model, Hashin-Sthrikman bound model, Kuster-Toksoz model, and Clausius-mossotti model. Consequently, the result brings a wider scientific view of the thin section image which now becomes both geologically and physically meaningfull. The neural network yields the nearly perfect map depending on the variation of the image color pattern. The effective value of each physical property depends on the accuracy of fraction calculation. The estimated effective value might be different from the core scale measured value since other carbonate minerals (aragonite and siderite) are assumed to be absent in the samples due difficulties in distinguishing them. Also, it depends on the staining technique in the thin sectioning process which in turn affects the captured image quality. Using this method one may obtain a brief estimate of physical properties in a rock from thin section before conducting laboratory measurement in core scale. If the rock is sufficiently homogeneous and fairly isotropic, the estimated results might be close to the laboratory measurements. In application, the generated acoustic map is tested to dynamically simulate the acoustic wave propagation and to measure the corresponding effective velocity. The effective velocity can be simultaneously estimated and measured in the thin sections of carbonate. Finally, it introduces the so called “thin section rock physics” in which physical properties modeling and measurement are undertaken in thin sections of rocks.
机译:通常进行薄截面观察,以研究岩石的岩体性质。毛孔或晶粒形状,尺寸,分布,孔连接,或最终2D岩石的光学孔隙率。在本文中,探讨了薄剖面分析的使用,以了解岩石的物理性质。这项工作是纯粹的计算机辅助理论建模,其中从薄截面图像,弹性,电气和热性能的有效值基于现有的岩石物理模型。在本研究中使用染色和孔浸渍碳酸酯薄部分,其部分地由重油部分饱和。人工神经网络的模式识别算法是在这项工作中的岩石成分类别。它被编程为用已知的弹性,电动和热性能值替换每个组成的RGB像素值。换句话说,它产生声速和密度,电导率和介电介电常数的分布(MAP),以及薄截面图像中的导热率。分配给生成地图的值是从岩石物理文献中获得的矿物质的已知物理常数获得的。从所生成的地图中,进行像素操纵以计算成分的分数和岩石的其他性质(例如孔隙率,矿物组合物)。然后使用这些结果来估计这些物理性质的有效值。通过使用理论岩石物理模型来执行估计。 voigt-reuss-hill模型,hashin-sthrikman绑定模型,kuster-toksoz模型和clausius-mossotti模型。因此,该结果使薄截面图像的更广泛的科学图,该视图现在成为地质和物理上有意义的。神经网络根据图像颜色图案的变型产生近乎完美的地图。每个物理性质的有效值取决于分数计算的准确性。估计有效值可能与核心尺度测量值不同,因为在区分它们时,样品中假设其他碳酸盐矿物(结构型矿物质和散晶)缺席。而且,它取决于薄切片过程中的染色技术,这反过来影响捕获的图像质量。使用该方法,可以在进行核心尺度的实验室测量之前,从薄片测量之前,可以在薄剖面上进行简要估计岩石中的物理性质。如果岩石是足够均匀的并且相当同质的,则估计的结果可能接近实验室测量。在应用中,测试产生的声学图以动态模拟声波传播并测量相应的有效速度。可以在碳酸酯的薄部分中同时估计有效速度。最后,它介绍了所谓的“薄剖面岩体”,其中在岩石的薄部分中进行了物理性质建模和测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号