【24h】

Implementing a strategy for Mars exopaleontology

机译:实施火星exopaleontology的策略

获取原文

摘要

A critical step in implementing a strategy to explore for evidence of past or present Martian life and/or prebiotic chemistry is to locate accessible surface outcrops of aqueously-formed sedimentary deposits, especially fine- grained, clay-rich detrital sediments, water-lain volcanic ash deposits, and chemical precipitates which provide especially favorable environments for microbial fossilization. We are presently limited in our site selection efforts by a lack of high spatial resolution remote sensing data at wavelengths that can provide information about surface mineralogy. Globally-distributed compositional data will be obtained at an average spatial resolution of approximately 3 km/pixel by the Thermal Emission Spectrometer instrument launched on the Global Surveyor orbiter in 1996. This will provide a basis for initial targeting of sites for a landed rover missions in 2001 and '03 which will cache samples for potential Earth return in '05. During '05, a sample return vehicle will be sent to one of the previous landed mission sites based on what is learned from those missions during in situ rover investigations. To optimize planning for rover missions to explore for evidence of past life, we need to attain outcrop-scale spatial resolution in the range approximately 100 to 300 m/pixel. This will be required to precisely locate sedimentary deposits of the right mineralogy (i.e. rock types most favorable for preserving a fossil record of past life) at landing sites and be able to reach them with rovers during nominal mission times. The earliest opportunity to obtain high spatial resolution orbital mapping of mineralogy is the 2001 opportunity. This data is needed as early as possible in the '01 mission to influence the landing site selection for the '03 rover mission. Once deposits of exopaleontological interest have been identified from orbit, we must deliver well-equipped, highly mobile science laboratories to the highest priority sites to carry out in situ mineralogical and organic analysis of rocks. To guarantee accessibility to the right samples, we will need to improve (1) landing precision, (2) rover mobility and (3) sample acquisition systems. Ideally, landing precision will match the minimum traverse distances needed for rovers to reach their intended targets within nominal mission times. The landing precision and mobility requirements will vary with each mission, depending on the size of the targeted deposits and terrain trafficability. But some of the highest priority exopaleontological targets (e.g. hydrothermal) are likely to be quite small (few kms~2), requiring rover mobility (and equivalent landing precision) in the range of 5 - 10 kms. Under present mission scenarios, rovers in 2001 and '03 will need to screen landing sites for the most promising rocks using in situ analytical methods. Once targeted, rocks will need to be sampled and cached for potential return during the 2005 opportunity. In addition to providing samples for potential Earth return, rovers in '01 and '03 will also gather crucial mineralogical information for ground truthing orbital data. Because sample return payloads are likely to be very small (several hundred grams), sub-sampling of larger rocks will be necessary to ensure that we obtain the most promising materials for return to Earth. In screening rocks to subsample, spectral methods that combine both mineralogical and organic analysis hold the greatest advantages for exopaleontology. However, such analyses will need to be carried out on freshly exposed rock surfaces, requiring rovers that are capable of coring, grinding, and/or breaking rocks. The need for rovers to expose fresh rock surfaces and to efficiently subsample larger rocks will require substantial improvements in sample acquisition and handling systems.
机译:在执行一项战略,探索过去或现在的火星生命和/或生命起源前化学的证据中关键的一步是要找到可水性形成的沉积矿床的接近地表露头,特别是细粒度的,富含粘土沉积物碎屑,水,躺在火山灰沉积和化学沉淀物,其提供了微生物僵化特别有利的环境。我们目前在我们的选址工作是缺乏在波长能够提供有关表面矿物信息遥感数据的高空间分辨率的限制。全球分布的成分数据将在通过于1996年在全球勘测人造卫星发射热发射光谱仪仪器约有3公里/像素的平均空间分辨率这将提供位点的一个初始定位的基础来获得降落流动站在任务2001年和03年将高速缓存样品在'05潜在地球的回报。在05年,一个样品返回车辆将在原地流动站调查发送到基于什么是从这些使命了解到以前的登陆任务的网站之一。要优化规划漫游者任务探索前世的证据,我们需要在范围内实现露头尺度的空间分辨率约为100〜300米/像素。精确定位正确的矿物学的沉积物这将需要(即岩石类型最有利于保护前世的化石记录),在着陆地点,并能够与在标称使命次流动站达到这些目标。获得矿物学的高空间分辨率的轨道映射尽早为2001年的机会。这个数据是尽可能早地在'01任务来影响'03火星车任务的着陆点的选择需要。一旦exopaleontological感兴趣的存款已经从轨道确定,我们必须提供装备精良,高移动科学实验室优先级最高的网站在原地矿物和岩石的有机分析来进行。为了保证无障碍的权利样品,我们将需要提高(1)着陆精度,(2)流动性流动站和(3)样本采集系统。理想情况下,着陆精度将匹配需要的流浪者名义任务的时间内达到预定目标的最小横向距离。着陆精度和移动性要求将每个任务各不相同,这取决于目标存款和地形通过性的大小。但一些最高优先级exopaleontological目标(例如水热)的很可能是相当小(几公里〜2),要求在5〜流动站迁移率(和等效着陆精度) - 10公里。根据目前的任务场景,在2001年和03年流浪者需要屏幕登陆地点使用原位分析方法最有前途的岩石。一旦锁定目标,岩石将需要进行采样和缓存,以用于2005年的机会在潜在回报。除了提供潜在回报地球的样本,火星车在01年和03年也将聚集于地面实况调查的轨道数据至关重要的矿物学信息。由于样品返回负载很可能是非常小(几百克),子采样较大的岩石将是必要的,以确保我们获得最有前途的材料返回地球。在筛选的岩石进行分采样,即结合了矿物学和有机分析谱方法抱着最大的优势exopaleontology。然而,这样的分析将需要对新暴露的岩石表面进行,因此需要是能够取芯,研磨,和/或破碎的岩石的流动站。需要流动站,露出新鲜的岩石表面,并有效地进行二次采样较大的岩石将需要在样品采集和处理系统显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号