首页> 外文会议>ASME International Mechanical Engineering Congress and Exposition >RESOLVING THE ELECTROCHEMICAL EQUATIONS OF A SOLID OXIDE FUEL CELL FOR USE IN TRANSIENT SIMULATION AND INTEGRATION INTO CYBER-PHYSICAL SYSTEMS
【24h】

RESOLVING THE ELECTROCHEMICAL EQUATIONS OF A SOLID OXIDE FUEL CELL FOR USE IN TRANSIENT SIMULATION AND INTEGRATION INTO CYBER-PHYSICAL SYSTEMS

机译:分辨固体氧化物燃料电池的电化学方程用于瞬态仿真和集成到网络 - 物理系统中

获取原文

摘要

A major challenge with complex cyber-physical systems stems from long model computational time that creates a mismatch between the model system and the physical system. The numerical modeling of solid oxide fuel cells (SOFCs) presents particular challenges due to the highly coupled nature of the underlying equations and the multiphysics needed to fully resolve their behavior during a transient event. To this end current approaches revolve around splitting the computational efforts into resolving temperature effects and resolving electrochemical effects. Current methods employed for the transient simulation of an SOFC for implementation in the Hybrid Performance (HyPer) facility cyberphysical plant at the National Energy Technology Laboratory reveal a distinct need for accelerated results with a high degree of stability. To this aim, an investigation into the computational time for the code reveals that the underlying electrochemical algorithm takes an order of magnitude more time than its thermal counterpart and has a tendency to vary in terms of iteration time and as such a rework of the underlying system is proposed. The primary method for accelerated electrochemical algorithm solutions is to employ higher order root finding recipes for the resolution of the highly coupled electrochemical equations. This is done with the intention to reduce the overall number of subiterations necessary for resolving voltage, current density, and species concentration, properties of the fuel cell that are all directly coupled and require nested iterative approaches. The overall objective of this approach is an order of magnitude reduction in calculation time without sacrificing stability and increasing accuracy. Specific approaches involve using both bounded and unbounded techniques, such as the False Position method and the Secant method (or if applicable Newton-Raphson) respectively, the drawbacks being slower convergence for False Position and instability for the Secant or Newton-Raphson methods. Current preliminary results on simplified versions of the parent functions involved for electrochemical calculations indicate a reduction in computational steps by a factor of two for the secant method and a factor of three for Newton-Raphson. When implemented into new modified electrochemical algorithms, the results indicate a possible order of magnitude reduction in calculation time.
机译:复杂的网络物理系统的主要挑战是源于长型计算时间,在模型系统和物理系统之间产生不匹配。固体氧化物燃料电池(SOFC)的数值建模由于底层方程的高耦合性质,并且在瞬态事件期间需要完全解决其行为所需的多麦体验而具有特殊挑战。在此目前的方法围绕将计算工作分解为解决温度效应和解决电化学效果。对于SOFC对在国家能源技术实验室混合性能(超)设施cyberphysical厂实施瞬态仿真采用目前的方法揭示了具有高度稳定性的加速效果明显的需求。为此目的,对代码的计算时间的调查显示底层电化学算法比其热对应物的时间更多的时间增加,并且在迭代时间和底层系统的返工方面具有变化的趋势提出。加速电化学算法解决方案的主要方法是采用高阶根发现配方,用于分辨高耦合电化学方程。这是为了减少分辨电压,电流密度和物种浓度,燃料电池的性质,燃料电池的性质,燃料电池的性质的旨在来完成这一点的意图完成,并且需要嵌套迭代方法。这种方法的整体目标是计算时间的数量级,而不会牺牲稳定性和提高准确性。具体方法涉及使用界限和无界技术,例如假位置方法和分别的误差方法(或者如果适用的牛顿Raphson),缺点会更慢的误击和镍或牛顿-Raphson方法的稳定性和不稳定性。目前关于电化学计算所涉及的父功能的简化版本的初步结果表明,对于纽顿 - 拉文申的三个倍数,计算步骤的计算步骤减少了两倍。当实现到新的修改电化学算法中时,结果表明计算时间的可能幅度降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号