首页> 外文会议>NSFS conference >Nondestructive determination of gamma-active nuclide profiles in soil
【24h】

Nondestructive determination of gamma-active nuclide profiles in soil

机译:非破坏性测定土壤中γ-活性核素曲线

获取原文

摘要

A scintillator is set in tube or hole in soil (Fig. 1,3) and it measures the counting rate profile c(z) of gamma-active nuclide photopeak. An inversion calculation, from this profile, is presented to determine the activity profile q(z) of radioactive nuclide in soil. The stratified or plane symmetry of the nuclide distribution is assumed, so that q and c depend only on z. In inversion calculation the q(z) is determined by iteration with the integral c(z) velence integral from x=0 to infinity of K(z',z)q(z')dz' so long that fitting is the best. The kernel K(z', z) is in [1]. ~(137)Cs activity profiles, from the photo-peak (662 keV) profiles, are determined by using a 1" NaI(Tl) scintillator in tubes, which were in soils before Chernobyl, or in holes in peat. I started 1986 and the first result is in Fig. 3. In spring of 1987 STUK took my project concerning the cesium activities on swimming shores. I determined surface activities (the arrangement a of Fig. 2) in southern Finland, and also there in the tubes of the ground- and soil water sites of Hydrological office (today in Environmental Institute) I then used the arrangement b of the equipment in Fig. 2 for cesium profile determinations. ~(134)Cs was also in interests. Its disturbing effects in ~(137)Cs determinations were tried to eliminate. In profile calculations the density profile rho(z) ought to be considered. Its increase with water content can be determined by neutron moisture measurement or in other ways. In calculations I tried to consider the tube walls and snow on the ground. The Rayleigh scatterings (Fig. 4) have so small scattering angles that they cause no troubles. Polarization has effects in the both scatterings. The differential Klein-Nishina scattering cross section can be necessary to be multiplied by S(x,Z) [2], where x velence sin(theta/2)/lambda; lambda is the initial photon wave length, theta scattering angle and Z atomic number. S E [0,1] and S(0,Z) velence 0 for all elements. The compilation of S(x,Z) in [3] I have used. The instrument in Fig. 2 is not so pulse height stabilized as should be. In future measurements the peat density instrument [4,5] I shall use, because it has the good stabilisation, from Nucletronics.
机译:闪烁器被设置在管或孔在土壤中(图1,3)和它测量伽马活性核素光峰的计数率分布C(z)表示。的反演计算,从该简档中,提出以确定土壤的放射性核素的活性谱Q(z)表示。假定核素分布的分层或平面对称,所以是q和c取决于只在z。在反演计算第q(z)是通过迭代与积分C(z)的Velence的从x = 0积分到K(Z”,Z)Q(Z ')的dz' 的无限长到配件是最好的决定。内核K(Z”,Z)是在[1]。 〜(137)Cs的活性谱,从光峰(662千电子伏)的配置文件,通过使用在管1" 的NaI(T1)的闪烁体,这是在土壤切尔诺贝利之前,或在泥炭孔来确定。我开始1986和第一个结果是在图3中的1987年STUK了关于在岸边游泳铯活动我的项目的春天。我在芬兰南部确定表面活动(图2布置的一个2),也有在管水文局(今日环境研究所)的地面和土壤水分的网站然后我用设备的配置b在图2中的铯轮廓测定。〜(134)铯也是在利益,其在〜干扰的影响( 137)Cs的测定均试图消除在轮廓计算的密度分布RHO(Z)应该被认为是,其与水含量的增加可通过中子水分测量或以其他方式来确定。在计算中我试图考虑管壁雪在地面上。瑞利散射计terings(图4)具有如此之小的散射角,它们不会造成麻烦。偏振在两个散射效果。差分克莱因 - 仁科散射截面可能有必要通过S(X,Z)[2],其中x Velence的SIN(THETA / 2)/λ相乘;拉姆达是初始光子波长,θ-散射角和Z原子序数。发E [0,1]和S(0,Z)的所有元素Velence的0。 S(X,Z)的[3]中的汇编我已经使用。图仪器2是不那么稳定化为脉冲高度应。在以后的测量泥炭密度仪[4,5]我应该使用,因为它具有良好的稳定性,从Nucletronics。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号