首页> 外文会议>Minerals, Metals and Materials Society >Finite element modeling of thermal stresses in MoSi_2 and MoSi_2+ SiC composite coatings: a preliminary study
【24h】

Finite element modeling of thermal stresses in MoSi_2 and MoSi_2+ SiC composite coatings: a preliminary study

机译:MOSI_2和MOSI_2 + SIC复合涂层热应力有限元建模:初步研究

获取原文

摘要

The high-temperature oxidation resistance of molybdenum can be significantly improved by coating it with MoSi_2. But, at the high temperature of operation, silicon from MoSi_2 diffuses into the molybdenum substrate and the oxidation resistance of the system deteriorates. Further, because of the CTE mismatch between Mo and MoSi_2, the composite breaks down and spalls on thermal cycling. To alleviate the problem of the CTE mismatch, the CTE of MoSi_2 is matched with that of Mo by the addition of 50wt% SiC. Silicon and carbon still diffuse into the molybdenum substrate thereby changing the chemistry of the overlayer and deteriorating the oxidation resistance of the composite. Incorporating a diffusion barrier layer between the Mo Substrate and the MoSi_2+SiC composite layer on the top solved this problem. The newly developed amorphous diffusion barrier layer prevents diffusion of both carbon and silicon into the substrate. Finite element modeling studies were used to evaluate the effect of the diffusion barrier on thermal stress in the coating. finite element models have calculated the thermal stresses produced in the coating upon cycling from 25 °C to 1600 °C. For reference, the stresses generated by a sharp interface between MoSi_2 and Mo were also modeled. Applying a diffusion barrier whose CTE falls in between that of Mo and MoSi_2 reduced the stress level present in the MoSi_2 coating. Changing the coating from MoSi_2 to Mosi_2+50wt% SiC composite effectively eliminated the stress in the coating. The stress in the MoSi_2+50wt% SiC composite coating turned compressive when the diffusion barrier had a CTE lower than Mo. When the diffusion barrier thickness increased, so did the stress in the coating. The present calculations have shown that a CTE of less than 6.4*10~(-6)/°C and a thickness of 50 nm for the diffusion barrier layer produce compressive stresses in the MoSi_2+50wt% SiC composite coating.
机译:通过将其用MOSI_2涂覆,可以显着改善钼的高温氧化抗性。但是,在操作的高温下,来自MOSI_2的硅扩散到钼基板中,并且系统的抗氧化性劣化。此外,由于Mo和MOSI_2之间的CTE失配,复合材料在热循环上分解并拼接。为了缓解CTE错配的问题,MOSI_2的CTE通过添加50wt%SiC与Mo的CTE匹配。硅和碳仍然扩散到钼基材中,从而改变覆盖层的化学和劣化复合材料的抗氧化性。在顶部的Mo衬底和MOSI_2 + SIC复合层之间的漫射阻挡层解决了这个问题。新开发的非晶漫射阻挡层防止碳和硅的扩散到基板中。有限元建模研究用于评估扩散屏障对涂层热应力的影响。有限元模型已经计算出在循环到25℃至1600℃的涂层中产生的热应力。作为参考,还建模了由MOSI_2和MO之间的尖锐界面产生的应力。应用CTE在MO和MOSI_2之间落入的扩散屏障降低了MOSI_2涂层中存在的应力水平。从MOSI_2改变涂层至MOSI_2 + 50wt%SIC复合材料有效地消除了涂层中的应力。当扩散屏障具有低于Mo的CTE时,MOSI_2 + 50wt%SIC复合涂层中的应力转动压缩。当扩散阻挡厚度增加时,涂层中的应力也是如此。本计算表明,对于扩散阻挡层的厚度为6.4×10〜(-6)/℃和50nm的厚度产生的CTE在MOSI_2 + 50wt%SiC复合涂层中产生压缩应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号