首页> 外文会议>IEEE International Solid- State Circuits Conference >A 665μW silicon photomultiplier-based NIRS/EEG/EIT monitoring asic for wearable functional brain imaging
【24h】

A 665μW silicon photomultiplier-based NIRS/EEG/EIT monitoring asic for wearable functional brain imaging

机译:基于665μW硅光电倍增器的NIRS / EEG / EIT监测ASIC,用于可穿戴式功能性脑成像

获取原文

摘要

Functional brain imaging is considered a powerful and practical solution for understanding the brain and neurological diseases. While EEG is an established method for non-invasive electrical activity, electrical-impedance tomography (EIT) and near-infrared spectroscopy (NIRS) can additionally measure impedance changes and hemodynamic processes. To facilitate long-term multi-channel brain imaging in a wearable form factor without cabling overhead, there is a need for low-power local amplifiers [1] to support all these modalities. The main principle of optical hemodynamic measurements is to send light pulses into the tissue and measure the reflected light, which is modulated by the oxygen levels in the blood (Fig. 17.8.1). State-of-the-art NIRS ICs typically consume a few mW, primarily for the LEDs to meet the required light sensitivity at the photodiodes (PDs). Silicon photomultipliers (SiPMs) are promising alternatives because they have excellent low-light detection capabilities, speed of response and higher detection efficiency in both visible and near infrared range [2]. Hence, SiPMs allow deeper brain sensing depth and the possibility to sample consistent cerebral regions with larger inter-optode distance. This benefit would significantly reduce the number of NIRS channels and the associated power for a wearable NIRS device. Although SiPMs require a higher bias voltage (~30V) than PDs, they achieve similar NIRS responses with a few hundred times less LED current. This results in a low-power NIRS ASIC and an overall power-efficient system. Existing optical sensing ICs are not suitable for a SiPM because of its large and variable output current. Trimming-based calibration methods [3] suffer from drift over time. Auto-zeroing by swapping an integrator capacitor [4][5] compensates ambient light at the cost of the integrator's headroom. Apart from ambient light, the dynamic range (DR) of the amplifier is also limited by a large NIRS signal, leading to a power-hungry readout.
机译:功能性脑成像被认为是理解大脑和神经系统疾病的强大而实用的解决方案。虽然脑电图是一种用于非侵入性电活动的既定方法,但电抗断层扫描(EIT)和近红外光谱(NIRS)可以另外测量阻抗变化和血液动力学过程。为了便于以可穿戴的形式进行长期的多通道脑部成像而不增加电缆开销,需要低功率本地放大器[1]来支持所有这些方式。光学血液动力学测量的主要原理是将光脉冲发送到组织中并测量反射光,该反射光由血液中的氧气水平调制(图17.8.1)。最先进的NIRS IC通常消耗几mW,主要用于LED以满足光电二极管(PD)所需的光敏性。硅光电倍增管(SiPM)是有前途的替代产品,因为它们在可见光和近红外范围内均具有出色的弱光检测能力,响应速度和更高的检测效率[2]。因此,SiPM允许更深的大脑感应深度,并有可能以更大的光电二极管之间的距离对一致的大脑区域进行采样。该好处将显着减少可穿戴NIRS设备的NIRS通道数量和相关功率。尽管SiPM需要比PD更高的偏置电压(〜30V),但它们可实现类似的NIRS响应,而LED电流却要小数百倍。这样就产生了低功耗的NIRS ASIC和整个节能系统。现有的光学感应IC由于其较大且可变的输出电流而不适用于SiPM。基于修整的校准方法[3]会随着时间的流逝而发生漂移。通过交换积分电容器[4] [5]进行自动调零,以积分器的净空为代价来补偿环境光。除环境光外,放大器的动态范围(DR)还受到较大的NIRS信号的限制,从而导致耗电的读数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号