首页> 外文会议>IEEE International Solid-State Circuits Conference >A 665μW silicon photomultiplier-based NIRS/EEG/EIT monitoring asic for wearable functional brain imaging
【24h】

A 665μW silicon photomultiplier-based NIRS/EEG/EIT monitoring asic for wearable functional brain imaging

机译:基于665μW的硅光电倍增管/ EEG / EIT监测ISIC用于可穿戴功能性脑成像

获取原文

摘要

Functional brain imaging is considered a powerful and practical solution for understanding the brain and neurological diseases. While EEG is an established method for non-invasive electrical activity, electrical-impedance tomography (EIT) and near-infrared spectroscopy (NIRS) can additionally measure impedance changes and hemodynamic processes. To facilitate long-term multi-channel brain imaging in a wearable form factor without cabling overhead, there is a need for low-power local amplifiers [1] to support all these modalities. The main principle of optical hemodynamic measurements is to send light pulses into the tissue and measure the reflected light, which is modulated by the oxygen levels in the blood (Fig. 17.8.1). State-of-the-art NIRS ICs typically consume a few mW, primarily for the LEDs to meet the required light sensitivity at the photodiodes (PDs). Silicon photomultipliers (SiPMs) are promising alternatives because they have excellent low-light detection capabilities, speed of response and higher detection efficiency in both visible and near infrared range [2]. Hence, SiPMs allow deeper brain sensing depth and the possibility to sample consistent cerebral regions with larger inter-optode distance. This benefit would significantly reduce the number of NIRS channels and the associated power for a wearable NIRS device. Although SiPMs require a higher bias voltage (~30V) than PDs, they achieve similar NIRS responses with a few hundred times less LED current. This results in a low-power NIRS ASIC and an overall power-efficient system. Existing optical sensing ICs are not suitable for a SiPM because of its large and variable output current. Trimming-based calibration methods [3] suffer from drift over time. Auto-zeroing by swapping an integrator capacitor [4][5] compensates ambient light at the cost of the integrator's headroom. Apart from ambient light, the dynamic range (DR) of the amplifier is also limited by a large NIRS signal, leading to a power-hungry readout.
机译:脑功能成像被认为是用于理解大脑和神经疾病的有力和实用的解决方案。虽然EEG是用于非侵入性的电活动,电阻抗层析成像(EIT)和近红外光谱法(NIRS)已建立的方法可以附加地测量阻抗变化和血流动力学过程。为了便于在可佩戴形状因素的长期多通道脑成像而不开销布线,有需要一种低功率本地放大器[1]至支持所有这些模式。光学血流动力学测量的主要原理是光脉冲发送到组织中并测量反射光,这是由在血液中(图17.8.1)中的氧水平调制。状态的最先进的IC NIRS通常消耗几毫瓦,主要用于LED以满足在光电二极管(PD)所需要的光的灵敏度。硅光电倍增管(SiPM)是有前途的替代品,因为它们具有优异的低光检测能力,响应速度和更高的检测效率在可见光和近红外范围[2]。因此,允许的SiPM更深脑感测深度和可能性样品一致脑区与较大光极间距离。这个好处将显著减少NIRS信道的数量和用于可佩戴装置NIRS相关功率。虽然的SiPM需要比PD的更高的偏置电压(〜30V),它们实现少了几百倍的LED电流类似的NIRS响应。这导致在低功率NIRS ASIC和总功率高效的系统。现有光学感测IC是因为其大的和可变的输出电流的不适合的SiPM。基于修整校准方法[3]从遭受漂移随时间。通过交换一个积分电容器[4] [5]在补偿积分器的净空的成本的环境光自动调零。除了环境光,放大器的动态范围(DR)也由一个大的NIRS受限信号,从而导致耗电的读出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号