【24h】

Scan Conversion for a Multiprocessor-based Ultrasound Processing System

机译:基于多处理器的超声处理系统的扫描转换

获取原文
获取原文并翻译 | 示例

摘要

To meet the computational requirements of mid-range and high-end programmable ultrasound systems, multiple processors are currently required. Algorithms optimized specifically for a single processor-based system may not perform well in a multiprocessor environment. They need to be efficiently remapped on multiple processors to take advantage of the increased computing power while minimizing the interprocessor data transfer and the latency between data acquisition and display. In this paper, we describe a multiprocessor-based implementation of scan conversion, a key processing task in an ultrasound system that geometrically transforms the acquired polar ultrasound data to Cartesian coordinates for display. The single processor-based scan conversion algorithm that was reported previously uses inverse mapping for geometric transformation, where the pixel values in the Cartesian display are determined from data in the polar domain. Inverse mapping requires access to a full frame of pre-scan-converted ultrasound data, which in a multiprocessor system can be located across multiple processors, thus requiring a significant amount of interprocessor data communications. Our modified scan conversion algorithm reduces the data movement by performing inverse-mapped scan conversion locally on the polar-domain data present in each processor's memory. Each processor handles a smaller amount of data, thus reducing the latency. The raster pixels generated by each processor are combined later. Interprocessor synchronization is used to ensure that each processor displays data belonging to the same frame. Data overlapping between processors avoids boundary artifacts between regions that are processed on different processors. Using four Hitachi/Equator Technologies' 300-MHz MAP-CA processors, scan conversion requires 5.6 ms for a 600x420 RGB frame, as compared to 14.6 ms using a single processor, and the latency is reduced by 33.3%. We believe that this type of parallel algorithms will facilitate the development and deployment of flexible multiprocessor-based ultrasound and other medical imaging systems.
机译:为了满足中端和高端可编程超声系统的计算要求,当前需要多个处理器。专为基于单处理器的系统优化的算法在多处理器环境中可能无法很好地执行。它们需要在多个处理器上有效地重新映射,以利用增加的计算能力,同时最小化处理器间的数据传输以及数据获取和显示之间的延迟。在本文中,我们描述了基于多处理器的扫描转换实现,这是超声系统中的一项关键处理任务,该超声系统将获取的极性超声数据几何转换为笛卡尔坐标以进行显示。先前报道的基于单处理器的扫描转换算法使用逆映射进行几何变换,其中笛卡尔显示中的像素值是根据极域中的数据确定的。逆映射需要访问预扫描转换后的超声数据的完整帧,在多处理器系统中,超声数据可以位于多个处理器之间,因此需要大量的处理器间数据通信。我们改进的扫描转换算法通过对每个处理器内存中存在的极性域数据进行本地逆映射扫描转换来减少数据移动。每个处理器处理的数据量较小,从而减少了等待时间。每个处理器生成的栅格像素将在以后合并。处理器间同步用于确保每个处理器显示属于同一帧的数据。处理器之间的数据重叠避免了在不同处理器上处理的区域之间的边界伪影。使用四个Hitachi / Equator Technologies的300-MHz MAP-CA处理器,对于600x420 RGB帧,扫描转换需要5.6 ms,而使用单个处理器则需要14.6 ms,并且延迟减少了33.3%。我们相信这种类型的并行算法将促进基于多处理器的灵活超声和其他医学成像系统的开发和部署。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号