首页> 外文会议>Biochemical and molecular engineering XX: the next generation of biochemical engineering: from nanoscale to industrial scale >SUSTAINABLE PRODUCTION OF INDUSTRIALLY RELEVANT BIOMONOMERS: A PHOTOSYNTHETIC MICROBIAL CONSORTIA APPROACH
【24h】

SUSTAINABLE PRODUCTION OF INDUSTRIALLY RELEVANT BIOMONOMERS: A PHOTOSYNTHETIC MICROBIAL CONSORTIA APPROACH

机译:可持续生产与工业相关的生物单体:光合作用的微生物物质方法

获取原文
获取原文并翻译 | 示例

摘要

Engineering of synthetic microbial consortia has emerged as a new and powerful biotechnology platform. To date, most microbial consortia have focused on biofuel development, though they also have enormous potential in the production of biobased commodity chemicals. This proposal describes a tripartite system in which three microbes of differentiated specializations can convert sunlight, carbon dioxide, and atmospheric nitrogen into chemical precursors for bulk polymer production. This framework offers a novel opportunity for biobased plastic production without energetically or monetarily expensive nutrient inputs, subsequently providing an attractive, sustainable alternative to fossil fuel analogues. Specifically, Azotobacter vinelandii, a nitrogen-fixing bacterium that secretes ammonia, and Synechococcus elongatus, a photosynthetic cyanobacterium that secretes sucrose form a symbiotic chassis hypothesized to support a third producer strain. Escherichia coli and Corynebacterium glutamicum are two archetypal bacterial species previously modified to produce an enormous array of chemicals. Given that both species can naturally grow on ammonia and sucrose, this will facilitate a tailored tripartite system with drop-in target production. These microorganisms have demonstrated production of chemical biopolymers well beyond polyhydroxyalkanoates (PHAs) and polylactic acid (PLA), including varied titers of amino acids, which serve as biomonomers for downstream chemocatalytic bioplastic production. This work bridges a fundamental gap between commercial biofermentation and community engineering, potentially alleviating energetic and economic constraints barring market entry of industrial biopolymer development. The consortium will be studied and optimized for the production of industrially relevant biomonomers as illustrated in Figure 1. Firstly, a computational and experimental investigation will establish a viable tripartite system based on microbial growth. The baseline model will then be used with producer strains for fermentation of amino acid precursors such as L-glutamic acid and L-lysine. These precursors can be readily extracted for chemocatalytic or semisynthetic conversion to biopolymers. Results of this work will be interpreted through a life cycle assessment (LCA) followed by a techno-economic analysis (TEA), which weighs emissions against nonrenewable energy usage and estimates of overall cost at scale, respectively.
机译:合成微生物联盟的工程学已经成为一种强大的新生物技术平台。迄今为止,尽管大多数微生物联盟在生物基商品化学品的生产中也具有巨大潜力,但它们都致力于生物燃料的开发。该提案描述了一种三方体系,其中三个不同专业领域的微生物可以将阳光,二氧化碳和大气中的氮转化为用于批量生产聚合物的化学前体。该框架为生物基塑料生产提供了新的机会,而无需消耗能源或金钱上昂贵的营养,从而为化石燃料类似物提供了有吸引力的,可持续的替代品。具体而言,藤蔓固氮菌是一种分泌氨的固氮细菌,而伸长拟乳球菌是一种分泌蔗糖的光合作用蓝细菌,它被认为是一种共生底盘,可以支持第三种生产菌株。大肠杆菌和谷氨酸棒杆菌是两个原型细菌,以前经过修饰可生产大量化学物质。鉴于这两个物种都可以自然地在氨和蔗糖上生长,这将促进定制的三方体系并降低目标产量。这些微生物已证明可以生产远远超过聚羟基链烷酸酯(PHA)和聚乳酸(PLA)的化学生物聚合物,其中包括各种滴度的氨基酸,它们可作为下游化学催化生物塑料生产的生物单体。这项工作弥合了商业生物发酵与社区工程之间的根本鸿沟,从而有可能缓解能源和经济方面的限制,除非工业生物聚合物开发进入市场。将对该财团进行研究和优化,以生产与工业相关的生物单体,如图1所示。首先,计算和实验研究将建立一个基于微生物生长的可行的三方体系。然后将基线模型与生产菌株一起用于氨基酸前体(例如L-谷氨酸和L-赖氨酸)的发酵。这些前体可以很容易地提取出来,用于化学催化或半合成转化为生物聚合物。这项工作的结果将通过生命周期评估(LCA)和技术经济分析(TEA)进行解释,该技术将排放量与不可再生能源使用量进行权衡,并按规模估算总体成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号