您现在的位置: 首页> 研究主题> mitochondria

mitochondria

mitochondria的相关文献在1993年到2023年内共计139篇,主要集中在肿瘤学、内科学、神经病学与精神病学 等领域,其中期刊论文134篇、会议论文5篇、相关期刊69种,包括华中科技大学学报(医学)(英德文版)、世界胃肠病学杂志:英文版、中国神经再生研究:英文版等; 相关会议3种,包括第七次全国中西医结合基础理论研究学术研讨会、中国化学会2000年学术会议、中国畜牧兽医学会2008年学术年会暨第一届中国兽医临床大会等;mitochondria的相关文献由569位作者贡献,包括Anup Ramachandran、Duygu Dee Harrison-Findik、Francoise Le Borgne等。

mitochondria—发文量

期刊论文>

论文:134 占比:96.40%

会议论文>

论文:5 占比:3.60%

总计:139篇

mitochondria—发文趋势图

mitochondria

-研究学者

  • Anup Ramachandran
  • Duygu Dee Harrison-Findik
  • Francoise Le Borgne
  • Hartmut Jaeschke
  • Hiroaki Matsumoto
  • Hoi Shan Wong
  • Jean Demarquoy
  • Jing Wang
  • Kam Ming Ko
  • Marie Kelly-Worden
  • 期刊论文
  • 会议论文

搜索

排序:

年份

期刊

    • An Beckers; Luca Masin; Annelies Van Dyck; Steven Bergmans; Sophie Vanhunsel; Anyi Zhang; Tine Verreet; Fabienne EPoulain; Karl Farrow; Lieve Moons
    • 摘要: Axonal regeneration in the central nervous system is an energy-intensive process.In contrast to mammals,adult zebrafish can functionally recover from neuronal injury.This raises the question of how zebrafish can cope with this high energy demand.We previously showed that in adult zebrafish,subjected to an optic nerve crush,an antagonistic axon-dendrite interplay exists wherein the retraction of retinal ganglion cell dendrites is a prerequisite for effective axonal repair.We postulate a‘dendrites for regeneration’paradigm that might be linked to intraneuronal mitochondrial reshuffling,as ganglion cells likely have insufficient resources to maintain dendrites and restore axons simultaneously.Here,we characterized both mitochondrial distribution and mitochondrial dynamics within the different ganglion cell compartments(dendrites,somas,and axons)during the regenerative process.Optic nerve crush resulted in a reduction of mitochondria in the dendrites during dendritic retraction,whereafter enlarged mitochondria appeared in the optic nerve/tract during axonal regrowth.Upon dendritic regrowth in the retina,mitochondrial density inside the retinal dendrites returned to baseline levels.Moreover,a transient increase in mitochondrial fission and biogenesis was observed in retinal ganglion cell somas after optic nerve damage.Taken together,these findings suggest that during optic nerve injury-induced regeneration,mitochondria shift from the dendrites to the axons and back again and that temporary changes in mitochondrial dynamics support axonal and dendritic regrowth after optic nerve crush.
    • Kilian Kürten; Anne-Christin Gude; Aimo Samuel Christian Epplen; Jan Stein; Carsten Theiss; Veronika Matschke
    • 摘要: Impaired axonal transport has been observed in patients with amyotrophic lateral sclerosis(ALS)and in animal models,suggesting that transport proteins likely play a critical role in the pathological mechanism of ALS.Dysregulation of Kinesin-family-member 5α(Kif5α),a neuron-specific isoform of heavy chain kinesin family,has been described in several neurological disorders,in humans and animal models,including ALS.In this study,we determined Kif5αexpression by gene sequencing,quantitative reverse transcription-polymerase chain reaction,and western blot assay in the cervical spinal cord of wobbler mice and immunofluorescence staining in dissociated cultures of the ventral horn.Further,we observed the distribution of Kif5αand mitochondria along motor neuronal branches by confocal imaging.Our results showed that Kif5αexpression was greatly dysregulated in wobbler mice,which resulted in altered distribution of Kif5αalong motor neuronal branches with an abnormal mitochondrial distribution.Thus,our results indicate that dysregulation of Kif5 and therefore abnormal transport in motor neuronal branches in this ALS model could be causative for several pathological findings at the cellular level,like misallocation of cytoskeletal proteins or organelles like mitochondria.
    • Baptiste Texier; Morgane Prime; Djamaa Atamena; Pascale Belenguer; Marion Szelechowski
    • 摘要: By controlling the proper folding of proteins imported into mitochondria and ensuring crosstalk between the reticulum and mitochondria to modulate intra cellular calcium fluxes.Mortalin is a chaperone protein that plays crucial roles in neuronal homeostasis and activity.Howeve r,its expression and stability are strongly modified in response to cellular stresses,in particular upon alte red oxidative conditions during neurodegeneration.Here,we report and discuss the abundant literature that has highlighted its contribution to the pathophysiology of Parkinson's disease,as well as its therapeutic and prognostic potential in this still incurable pathology.
    • Diogo Trigo; Jose Joao Vitoria; Odete A.B.da Cruz e Silva
    • 摘要: In recent years, multiple disciplines have focused on mitochondrial biology and contributed to understanding its relevance towards adult-onset neurodegenerative disorders. These are complex dynamic organelles that have a variety of functions in ensuring cellular health and homeostasis. The plethora of mitochondrial functionalities confers them an intrinsic susceptibility to internal and external stressors(such as mutation accumulation or environmental toxins), particularly so in long-lived postmitotic cells such as neurons. Thus, it is reasonable to postulate an involvement of mitochondria in aging-associated neurological disorders, notably neurodegenerative pathologies including Alzheimer’s disease and Parkinson’s disease. On the other hand, biological effects resulting from neurodegeneration can in turn affect mitochondrial health and function, promoting a feedback loop further contributing to the progression of neuronal dysfunction and cellular death. This review examines state-of-the-art knowledge, focus on current research exploring mitochondrial health as a contributing factor to neuroregeneration, and the development of therapeutic approaches aimed at restoring mitochondrial homeostasis in a pathological setting.
    • Francesca Luchetti; Silvia Carloni; Maria G.Nasoni; Russel J.Reiter; Walter Balduini
    • 摘要: Mesenchymal stem cells are multipotent stem cells that reside in many human tissues and organs.Mesenchymal stem cells are widely used in experimental and clinical regenerative medicine due to their capability to transdifferentiate into various lineages.However,when transplanted,they lose part of their multipotency and immunomodulatory properties,and most of them die after injection into the damaged tissue.In this review,we discuss the potential utility of melatonin in preserving mesenchymal stem cells’survival and function after transplantation.Melatonin is a pleiotropic molecule regulating critical cell functions including apoptosis,endoplasmic reticulum stress,and autophagy.Melatonin is also synthesized in the mitochondria where it reduces oxidative stress,the opening of the mitochondrial permeability transition pore and the downstream caspase activation,activates uncoupling proteins,and curtails the proinflammatory response.In addition,recent findings showed that melatonin also promotes the formation of tunneling nanotubes and the transfer of mitochondria between cells through the connecting tubules.As mitochondrial dysfunction is a primary cause of mesenchymal stem cells death and senescence and a critical issue for survival after transplantation,we propose that melatonin by favoring mitochondria functionality and their transfer through tunneling nanotubes from healthy to suffering cells could improve mesenchymal stem cellbased therapy in a large number of diseases for which basic and clinical trials are underway.
    • Napoleon Torres-Martinez; Stephan Chabardes; John Mitrofanis
    • 摘要: Epilepsy is synonymous with individuals suffering repeated“fits”or seizures.The seizures are triggered by bursts of abnormal neuronal activity,across either the cerebral cortex and/or the hippocampus.In addition,the seizure sites are characterized by considerable neuronal death.Although the factors that generate this abnormal activity and death are not entirely clear,recent evidence indicates that mitochondrial dysfunction plays a central role.Current treatment options include drug therapy,which aims to suppress the abnormal neuronal activity,or surgical intervention,which involves the removal of the brain region generating the seizure activity.However,~30%of patients are unresponsive to the drugs,while the surgery option is invasive and has a morbidity risk.Hence,there is a need for the development of an effective non-pharmacological and non-invasive treatment for this disorder,one that has few side effects.In this review,we consider the effectiveness of a potential new treatment for epilepsy,known as photobiomodulation,the use of red to near-infrared light on body tissues.Recent studies in animal models have shown that photobiomodulation reduces seizure-like activity and improves neuronal survival.Further,it has an excellent safety record,with little or no evidence of side effects,and it is non-invasive.Taken all together,this treatment appears to be an ideal treatment option for patients suffering from epilepsy,which is certainly worthy of further consideration.
    • Xiao-fang Guo; Shuang-shuang Gu; Jun Wang; Hao Sun; Yu-juan Zhang; Peng-fei Yu; Jin-song Zhang; Lei Jiang
    • 摘要: BACKGROUND:Individuals who survive a cardiac arrest often sustain cognitive impairments due to ischemia-reperfusion injury.Mesenchymal stem cell(MSC)transplantation is used to reduce tissue damage,but exosomes are more stable and highly conserved than MSCs.This study was conducted to investigate the therapeutic effects of MSC-derived exosomes(MSC-Exo)on cerebral ischemia-reperfusion injury in an in vitro model of oxygen-glucose deprivation/reperfusion(OGD/R),and to explore the underlying mechanisms.METHODS:Primary hippocampal neurons obtained from 18-day Sprague-Dawley rat embryos were subjected to OGD/R treatment,with or without MSC-Exo treatment.Exosomal integration,cell viability,mitochondrial membrane potential,and generation of reactive oxygen species(ROS)were examined.Terminal deoxynucleotidyl transferase-mediated 2’-deoxyuridine 5’-triphosphate nickend labeling(TUNEL)staining was performed to detect neuronal apoptosis.Moreover,mitochondrial function-associated gene expression,Nrf2 translocation,and expression of downstream antioxidant proteins were determined.RESULTS:MSC-Exo attenuated OGD/R-induced neuronal apoptosis and decreased ROS generation(P<0.05).The exosomes reduced OGD/R-induced Nrf2 translocation into the nucleus(2.14±0.65 vs.5.48±1.09,P<0.01)and increased the intracellular expression of antioxidative proteins,including superoxide dismutase and glutathione peroxidase(17.18±0.97 vs.14.40±0.62,and 20.65±2.23 vs.16.44±2.05,respectively;P<0.05 for both).OGD/R significantly impaired the mitochondrial membrane potential and modulated the expression of mitochondrial functionassociated genes,such as PINK,DJ1,LRRK2,Mfn-1,Mfn-2,and OPA1.The abovementioned changes were partially reversed by exosomal treatment of the hippocampal neurons.CONCLUSIONS:MSC-Exo treatment can alleviate OGD/R-induced oxidative stress and dysregulation of mitochondrial function-associated genes in hippocampal neurons.Therefore,MSCExo might be a potential therapeutic strategy to prevent OGD/R-induced neuronal injury.
    • Hao Wang; Dongyan Zhang; Juan Luis Fernández-Lorenzo; Hailong Shen; Ling Yang
    • 摘要: Programmed cell death occurs in browning explants of Fraxinus mandshurica during somatic embryogenesis, but the underlying mechanism is unclear. In this study, single cotyledons of zygotic embryos of F. mandshurica were used as explants. Mitochondrial structure and function, caspase-3-like protease activity, hydrogen peroxide metabolism, and nitric oxide accumulation induced by high concentrations of sucrose and plant growth regulators were studied. The results show that plant growth regulators induced somatic embryogenesis and also promoted explant browning. High sucrose concentrations had similar effects. High concentrations of sucrose and plant growth regulators led to the accumulation of hydrogen peroxide and nitric oxide which induced changes in mitochondrial structure and function such as modifications in mitochondrial morphology, increased membrane permeability, decreased membrane potential, and the release of cytochrome c into the cytoplasm. An increase in caspase-3-like protease activity triggered programmed cell death in some browning explant cells. During somatic embryogenesis there were increased activities of superoxide dismutase, peroxidase, and catalase, which are associated with hydrogen peroxide metabolism and jointly maintain reactive oxygen species levels. Intracellular nitric oxide synthase and nitrate reductase activities were not significantly correlated with nitric oxide content. Instead, intracellular nitric oxide may be derived from non-enzymatic reactions. Our results indicate that hydrogen peroxide and nitric oxide may function as signals, playing key roles in somatic embryogenesis and programmed cell death of explant cells of F. mandshurica. The interaction between nitric oxide and reactive oxygen species determines the occurrence of programmed cell death in explant cells;somatic embryogenesis and programmed cell death are positively regulated by hydrogen peroxide. However, the regulation of nitric oxide is complex.
    • Taketoshi Hideshima; Mikie Nishimura
    • 摘要: Nicotinamide adenine dinucleotide (NAD) oscillation was observed when the isolated mitochondria were immersed in a pyruvate solution. In addition, when an adenosine diphosphate (ADP) was added to the mitochondrial suspension containing pyruvate, adenosine triphosphate (ATP) oscillation was observed as well as NADH oscillation. At this time, the pH within mitochondria also oscillated. It was found that the oscillatory reaction of NADH caused by the membrane permeation of pyruvate continues, causing the oscillation of NADH and H+ in the subsequent reactions. The pH oscillation led to the ATP oscillation. It is considered that the oscillatory reaction caused by the gradual entry of pyruvate into mitochondria was thought to be carried over to both the citric acid cycle and the respiratory chain, ultimately leading to the ATP oscillation in oxidative phosphorylation. Similarly, it was found that membrane permeation of malate causes the gradual occurrence of NADH, at which point NADH oscillates, followed by an oscillatory reaction of the respiratory chain, and finally ATP oscillation. It was found that the oscillations of NADH and ATP occur without going through the citric acid cycle. Oscillations of NADH and other intermediates in both the citric acid cycle and respiratory chain were also confirmed by experiments using semipermeable membranes. These results support our hypothesis that the gradual entry of the substrate by membrane permeation triggers an oscillatory reaction of the enzyme, which is also carried over to subsequent reactions.
    • Malek Kammoun; Lydie Nadal-Desbarats; Sandra Même; Aude Lafoux; Corinne Huchet; Géraldine Meyer-Dilhet; Julien Courchet; Frédéric Montigny; Frédéric Szeremeta; William Même; Vladimir Veksler; Jérôme Piquereau; Philippe Pouletaut; Malayannan Subramaniam; John R. Hawse; Jean-Marc Constans; Sabine F. Bensamoun
    • 摘要: Recent studies have demonstrated a new role for Klf10, a Krüppel-like transcription factor, in skeletal muscle, specifically relating to mitochondrial function. Thus, it was of interest to analyze additional tissues that are highly reliant on optimal mitochondrial function such as the cerebellum and to decipher the role of Klf10 in the functional and structural properties of this brain region. In vivo (magnetic resonance imaging and localized spectroscopy, behavior analysis) and in vitro (histology, spectroscopy analysis, enzymatic activity) techniques were applied to comprehensively assess the cerebellum of wild type (WT) and Klf10 knockout (KO) mice. Histology analysis and assessment of locomotion revealed no significant difference in Klf10 KO mice. Diffusion and texture results obtained using MRI revealed structural changes in KO mice characterized as defects in the organization of axons. These modifications may be explained by differences in the levels of specific metabolites (myo-inositol, lactate) within the KO cerebellum. Loss of Klf10 expression also led to changes in mitochondrial activity as reflected by a significant increase in the activity of citrate synthase, complexes I and IV. In summary, this study has provided evidence that Klf10 plays an important role in energy production and mitochondrial function in the cerebellum.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号