您现在的位置: 首页> 研究主题> 磁弹性

磁弹性

磁弹性的相关文献在1988年到2021年内共计157篇,主要集中在力学、物理学、自动化技术、计算机技术 等领域,其中期刊论文94篇、会议论文10篇、专利文献53篇;相关期刊56种,包括燕山大学学报、河北大学学报(自然科学版)、非线性动力学学报等; 相关会议10种,包括第24届全国结构工程学术会议、第十三届现代数学和力学学术会议(MMM-XIII)暨钱伟长诞辰100周年纪念大会、中国核学会2011年年会等;磁弹性的相关文献由268位作者贡献,包括白象忠、胡宇达、王知人等。

磁弹性—发文量

期刊论文>

论文:94 占比:59.87%

会议论文>

论文:10 占比:6.37%

专利文献>

论文:53 占比:33.76%

总计:157篇

磁弹性—发文趋势图

磁弹性

-研究学者

  • 白象忠
  • 胡宇达
  • 王知人
  • 王平
  • 徐耀玲
  • 田振国
  • 常福清
  • 朱为国
  • 秦飞
  • 边宇虹
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 胡宇达; 施红勃
    • 《振动工程学报》  | 2017年
    • 摘要: 研究磁场作用下导电旋转圆形薄板的行波动力学特性问题.根据哈密顿原理推导出磁场作用下旋转运动圆板的磁弹性振动控制方程,根据边界条件设定行波特性振型函数,应用伽辽金积分得到了行波动力学特征方程.通过算例分析旋转运动圆板在磁场作用下的前、后行波振动频率变化和各阶模态的临界转速与振动失稳问题,并得到了圆形薄板临界转速对应各阶模态的变化规律,分析了不同磁场强度对各阶模态振动频率的影响曲线和不同振动模态阻尼的变化曲线,以及相同磁场作用下旋转圆板厚度变化对振动频率和临界转速的影响曲线.结果表明:磁场、转速、板厚等参数对旋转圆板的行波振动有显著影响.%The dynamical characteristics of the traveling waves of a conductive rotating circular plate in magnetic fields are investigated.Firstly,the governing vibration equation of a thin circular rotating plate in magnetic field is derived based on Hamilton's principle.Then,the traveling wave dynamical equation is derived through assuming proper mode shape function according to the boundary condition and using Galerkin method.The variation of the vibration frequency of the forward traveling wave and the backward traveling wave,the critical rotational speed and the instability of each mode are then investigated with some examples.The relation curves between the magnetic strength and the vibration frequency as well as the damping of each mode,the relation curve between the thickness of the plate and its vibration frequency as well as the critical speed are also presented.The results show that the traveling wave vibration would be affected significantly by the magnetic field,the speed,the thickness and other system parameters.
    • 王杰; 胡宇达
    • 《振动与冲击》  | 2016年
    • 摘要: The magneto-elastic resonance of axially moving current-carrying beams in magnetic field was investigated.Considering the geometric nonlinearity and the interaction among force,motion,electric action and magnetic one,the expressions of kinetic energy,strain energy and electro-magnetic force were derived.Then with Hamilton princile,the vibration equation of an axially moving current-carrying beam in magnetic field was deduced.According to the simply supported boundary condition and assuming three orders modal shape functions,the magneto-elastic vibration differential equations of the beam were obtained through applying Galerkin integral method.Based on the method of multi-scale,the primary resonance amplitude-frequency response equations under external excitation and current of the system were gained.The influences of magnetic field strength,applied current,axial velocity,external motion on the amplitude of the system resonance were analyzed.The results showed that in the response plot of amplitude-intensity of magnetic field,with increase in tuning parameters,the resonance curve gradually retracts and its upper finally closes,the critical separation point in this varying process is shifted to the right due to the applied current.%研究磁场环境中轴向运动载流梁的磁弹性共振问题;考虑几何非线性,给出梁在力、运动、电磁作用下的动能、应变能以及电磁力的表达式。应用哈密顿变分原理,推得磁场中轴向运动载流梁的磁弹性振动方程。针对两端简支边界条件,假设三阶模态形函数,通过伽辽金积分推得梁的磁弹性振动微分方程;应用多尺度法,得到外激励力和外加电流作用下系统的主共振幅频响应方程;数值分析了磁感应强度、外加电流、轴向速度和外激励力对系统共振幅值的影响。结果表明,在振幅-磁感应强度响应图中,随着调谐参数的增大,共振曲线逐渐内缩最终上部封闭,外加电流使此变化过程中的临界分离点向右“偏移”。
    • 李哲; 胡宇达; 姚臻臻
    • 《燕山大学学报》  | 2015年
    • 摘要: 研究了磁场中旋转运动导电薄板在外激励作用下的强迫振动问题.在给出动能、应变能和电磁能表达式的基础上,根据哈密顿原理导出旋转圆板在磁场中横向载荷作用下的轴对称磁弹性振动方程.假设位移函数并运用分离变量法分离时间变量和空间变量,应用伽辽金积分法,得到激励作用下圆板的强迫振动微分方程并求解.通过数值计算得到简支和固支两种边界条件下的幅频曲线和相轨迹图,分析磁感应强度、圆板的厚度、半径和转速的变化对振动的影响.
    • 田振国; 梁金奎
    • 《振动工程学报》  | 2018年
    • 摘要: 磁流变弹性体材料制成的构件在机械荷载和强磁场共同作用下时,材料的弹性模量随外加磁场的变化而变化,构件的变形也使得构件内、外的磁场随之改变,因此这是一个耦合场问题,而且本构关系是非线性的.在载流薄板的运动方程、物理方程及磁流变本构关系的基础上,导出了由磁流变弹性体制成的薄板在电磁场与机械荷载共同作用下的磁弹性动力屈曲方程,应用Galerkin原理将屈曲方程整理为Mathieu方程的标准形式,并将动力屈曲问题归结为对Mathieu方程的求解.利用Mathieu方程解的稳定性,及系数λ和∞之间的本征关系,导出了磁流变弹性薄板动力屈曲临界状态的判别方程.讨论了磁场强度、薄板厚度、颗粒体积分数、薄板长度等参量对四边简支磁流变弹性薄板临界失稳荷载的影响.%When the magnetorheological member is under mechanical load and strong magnetic field simutaneously,the magnetic induction effect will take place which will cause the variation of the modulus of elasticity.Meanwhile,the variation of modulus has also effects on the deformation of the component which affects the magnetic field distribution.So it is a coupling system and the constitutive relation is nonlinear.In this paper,based on the equations of motion,physical equations and magnetorheological constitutive relations,the magneto-elastic dynamic buckling equation of a thin magnetorheological elastic plate under the action of mechanical load in a magnetic field is derived.Then the buckling equation is transformed into a standard Mathieu equation by using Galerkin method.Thus,the solving of buckling problem is changed to the solving of Mathieu equation.According to the solution's stability of Mathieu equation and the relation of the coefficients λ and ηin Mathieu equation,the criterion equation of the buckling problem is also presented.The influence of the magnetic field intensity,the thickness of the plate,particle volume fraction,plate length parameters on the critical buckling load of simply supported thin magnetorheological elastic plate are discussed.
    • 胡宇达; 朴江民
    • 《计算力学学报》  | 2017年
    • 摘要: Numerical simulation was used to research the bifurcation and the chaos of rotating circular plate in magnetic field.Firstly,based on the thin plate theory and Maxwell Equations,the expressions of kinetic energy,potential energy,virtual work by external force and electromagnetic force were derived.Using Hamilton's principle,the nonlinear non-axisymmetric magnetoelastic vibration differential equations for vibration of the rotating circular plate in the magnetic field were investigated.Secondly,the Galerkin method and Bessel mode shape function were used to derive the ordinary differential equations for axisymmetric transverse vibration.Finally,the primary resonance of the circular plat fixed boundary was studied.Considering the first order mode shape function,the results such as bifurcation diagrams and Poincare map were obtained under the control parameters of magnetic induction,transverse force magnitude and frequency respectively.The influence of bifurcation parameters on the bifurcation and chaos of system was discussed.The results show that the bifurcation parameters affect the stability of the system,and with the system experiences a complicated process from chaos to multi periodic motion to chaos as these parameters vary.%应用数值模拟方法研究磁场中旋转运动圆板的分叉与混沌问题.首先,基于薄板理论和麦克斯韦电磁场方程组,给出了动能、应变势能、外力虚功以及电磁力的表达式,再利用哈密顿原理,得到磁场中旋转运动圆板横向振动的非轴对称非线性磁弹性振动微分方程组.其次,采用贝塞尔函数作为圆板的振型函数进行伽辽金积分,得到了轴对称情况下横向振动的常微分方程组表达式.最后,针对主共振,取周边夹支边界条件的圆板作为算例,得到了当振型函数取一阶时,将磁感应强度、外激励振幅和激励频率作为控制参数的分叉图及庞加莱映射图等计算结果,并讨论了分叉参数对系统的分叉与混沌的影响.数值计算结果表明,这些控制参数的变化影响系统稳定性,在分叉参数逐渐变化的过程中,系统经历从混沌到多倍周期运动再到混沌的往复过程.
    • 李哲; 胡宇达
    • 《振动与冲击》  | 2017年
    • 摘要: Magneto-elastic resonance of a conductive circular plate rotating with varying velocity under combined parametric and forced excitations was investigated.The conductive circular plate was subjected to parametric excitations due to the time-varying rotating speed and magnetic field forces.The magneto-elastic parametric vibration equations of the variable-velocity rotating conductive circular plate were established,its axisymmetric vibration differential equation under combined parametric and forced excitations was obtained through the application of Galerkin method.Then,the multiscale method was applied to derive two conditions for resonance occurring,two corresponding amplitude-frequency response equations were deduced,respectively.The influences of plate's coordination parameters,magnetic field parameters,rotating speed and excitations on the vibration performance of the circular plate were studied.Amplitudeparameter curves of two resonance conditions were compared,and the influences of parameters on the system's stability were discussed.According to the global bifurcation diagram of the system,the influences of changes of bifurcation parameters on the system dynamic characteristics were discussed.%研究变速旋转圆板的非线性磁弹性参强联合振动问题.给出旋转圆板在磁场中的磁弹性振动方程,应用伽辽金法离散变量,得到横向磁场中旋转圆板轴对称参强联合振动微分方程.运用多尺度法求解振动微分方程,分析久期项得到系统发生参强联合共振时的两种共振状态,并分别给出两种状态下系统的幅频响应方程.通过数值计算,给出圆板的协调参数、磁场、转速、激励力等参数变化对振动特性的影响,对比两种共振条件下的幅值-参数曲线,讨论不同参数变化对系统稳定性的影响.通过系统的全局分岔图,讨论分岔参数变化对系统动力学特性的影响.
    • 涂建新; 王知人; 王平
    • 《振动与冲击》  | 2015年
    • 摘要: 根据电动力学理论、板壳磁弹性理论和结构随机振动理论,导出电磁场中矩形薄板的磁弹性非线性随机振动方程,然后利用伽辽金法对四边简支矩形薄板的非线性随机振动方程进行整理,得到伊藤型状态方程;在外界激励是平稳高斯白噪声的条件下,利用稳态的FPK方程法求解得到薄板的稳态随机振动位移和速度响应的多个数字特征;通过具体数值算例分析,讨论了电磁参数对各数字特征的影响。%According to the theory of electrodynamics,the magneto-elastic theory of plates and shells,and the theory of structure's random vibration,the magneto-elastic nonlinear random vibration equation of a plate simply supported in an electromagnetic field was derived.And then,the nonlinear random vibration equation was changed into an ITO equation using Galerkin method.The statistical characteristics of the displacement and velocity responses of the plate's stationary random vibration were obtained by using FPK equations method when the external excitation was stationary Gauss white noise.The influences of the parameters of the electromagnetic field on the statistical characteristics were discussed with numerical examples.
  • 查看更多

联系方式:18141920177 (微信同号)

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号