您现在的位置: 首页> 研究主题> concrete

concrete

concrete的相关文献在1995年到2023年内共计280篇,主要集中在肿瘤学、建筑科学、一般工业技术 等领域,其中期刊论文278篇、专利文献2篇;相关期刊71种,包括中国高等学校学术文摘·建筑与土木工程、中国科学、中南大学学报等; concrete的相关文献由721位作者贡献,包括Hee Seok Kim、Hyejin Yoon、Won Jong Chin等。

concrete—发文量

期刊论文>

论文:278 占比:99.29%

专利文献>

论文:2 占比:0.71%

总计:280篇

concrete—发文趋势图

concrete

-研究学者

  • Hee Seok Kim
  • Hyejin Yoon
  • Won Jong Chin
  • Young Jin Kim
  • Keunhee Cho
  • Sung Tae Kim
  • Sung Yong Park
  • Byung-Suk Kim
  • George Batis
  • Hamadallah Al-Baijat
  • 期刊论文
  • 专利文献

搜索

排序:

年份

期刊

关键词

    • Qiang Su; Jinming Xu
    • 摘要: To enhance the sulfate attack resistance performance of concrete,Sulfate erosion test was carried out on basalt fiber concrete with different contents,selecting a concentration of 5%sulfate solution and using a dry−wet cycle mechanism attack of basalt fiber-reinforced concrete(BFRC).Every 15 dry−wet cycles,the mass,compressive strength,splitting tensile strength,and relative dynamic elastic modulus of BFRC were tested,and the SO_(4)^(2−)con-centration was measured.This work demonstrates that the mass,relative dynamic elastic modulus,compressive and splitting tensile strength of BFRC reveal a trend of climb up and then decline with the process of the dry−wet cycle.Basalt fiber can enhance the sulfate corrosion resistance of concrete by delaying the erosion of concrete induced by SO_(4)^(2−)and increasing the bearing and anti-deformation capacities of concrete by improving its inter-nal structure.Additionally,when mixing 0.2%basalt fiber into concrete,the strength deterioration rate will be reduced when the peak values of splitting tensile and compressive strength appear at 60 and 75 times the alter-nating dry−wet cycles,respectively.Adverse effects will occur when the fiber volume fraction exceeds 0.2%.The research in this paper can provide a foundation for the engineering applications of basalt fiber concrete.
    • Xiaoli Wei; D.A.Makhloof; Xiaodan Ren
    • 摘要: Fatigue failure phenomena of the concrete structures under long-term low amplitude loading have attractedmore attention.Some structures,such as wind power towers,offshore platforms,and high-speed railways,may resist millions of cycles loading during their intended lives.Over the past century,analytical methods for concrete fatigue are emerging.It is concluded that models for the concrete fatigue calculation can fall into four categories:the empirical model relying on fatigue tests,fatigue crack growth model in fracture mechanics,fatigue damage evolution model based on damage mechanics and advanced machine learning model.In this paper,a detailed review of fatigue computing methodology for concrete is presented,and the characteristics of different types of fatigue models have been stated and discussed.
    • Peng Zhang; Dongsheng Shi; Ping Han; Wenchao Jiang
    • 摘要: The destruction of concrete building materials in severely cold regions of the north is more severely affected by freeze-thaw cycles,and the relationship between the mechanical properties and pore structure of concrete with fine aggregate from municipal solid waste(MSW)incineration bottom ash after freeze-thaw cycles is analyzed under the degree of freeze-thaw hazard variation.In this paper,the gray correlation method is used to calculate the correlation between the relative dynamic elastic modulus,compressive strength,and microscopic porosity parameters to speculate on the most important factors affecting their changes.The GM(1,1)model was established based on the compressive strength of the waste incineration ash aggregate concrete,the relative error between the simulated and actual values in the model was less than 5%,and the accuracy of the model was level 1,indicating that the GM(1,1)model can well reflect the change in the compressive strength of the MSW incineration bottom ash aggregate concrete during freeze-thaw cycles.Using the gray correlation method,the correlation between the relative dynamic elastic modulus,compressive strength,air content,specific surface area,pore spacing coefficient,and pore average chord length was calculated,and the pore spacing coefficient and pore average chord length were determined to be highly correlated with each other.This determination can help analyze and infer the deterioration mechanism of concrete subject to freeze-thaw cycles.These results can provide a theoretical basis for guiding the engineering practice of concrete with fine aggregates of household bottom ash in the northern cold region.
    • Qing Liu; Minghao Huang; Woon-Seek Lee
    • 摘要: Price movement of building materials increases the uncertainty of architectural planning. As a basic building material, commercial concrete is an important part of various construction costs. It is of great significance to predict its price change trend in advance. In this paper, a univariate autoregressive series is constructed based on the daily average price of concrete in major cities in China;then it uses a combined model of Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) to extract the spatial and temporal rules of time series, to achieve accurate prediction of the trend of concrete price changes 10 days ago. The prediction accuracy rate of the model is 97.13%, and the precision, recall rate, and F1 score are: 97.15%, 97.27%, and 97.20%, respectively. The prediction result is of great significance to various architectural planning.
    • Hao Zhang; Yuan-feng Zheng; Qing-bo Yu; Chao Ge; Cheng-hai Su; Hai-fu Wang
    • 摘要: Penetration and internal blast behavior of reactive liner enhanced shaped charge against concrete space were investigated through experiments and simulations.The volume of the enclosed concrete space is about 15 m^(3).The reactive liner enhanced shaped charge utilizes reactive copper double-layered liner,which is composed of an inner copper liner and an outer reactive liner,while the reactive material liner is fabricated by PTFE/Al(Polytetrafluoroethylene/Aluminum)powders through cold-pressing and sintering.Static explosion experiments show that,compared with the shaped charge which utilizes copper liner,the penetration cavity diameter and spalling area of concrete by the novel shaped charge were enlarged to 2 times and 4 times,respectively.Meanwhile,the following reactive material had blast effect and produced significant overpressure inside the concrete closed space.Theoretical analysis indicates concrete strength and detonation pressure of reactive material both affect the penetration cavity diameter.To the blast behavior of reactive material inside the concrete space,developing TNT equivalence model and simulated on AUTODYN-3 D for analysis.Simulation results reproduced propagation process of the shock wave in concrete space,and revealed multi-peaks phenomenon of overpressure-time curves.Furthermore,the empirical relationship between the peak overpressure and relative distance for the shock wave of reactive material was proposed.
    • WANG Xiuhai; TIAN Zhuangcai; ZHANG Yanan; SU Xiuting; LIU Hongjun; LIU Tao
    • 摘要: Saline soil is widely distributed in the marine sediments along the coast of the world and the arid-semi-arid areas of the Middle East and Iraq,and calcium sulfate erosion has become one of the important factors affecting the durability of concrete in this area.In order to clarify the mechanism of sulfate ion damage to concrete,this paper mainly takes saline soil with high sulfate content in coastal area as well as arid-semi-arid area as the research object,and uses indoor geotechnical test,field test and numerical simulation to study the influence of different dry-wet cycle times on the unconfined compressive strength of concrete test blocks,and puts forward the relationship between the erosion arrival depth and time of sulfate ion in concrete,so as to predict the long-term erosion depth by using the erosion depth of sulfate ion in concrete in short time.The results show that the shorter the erosion time when the erosion reaches a certain depth,and the larger the erosion reaches when the erosion time is the same,the faster the erosion reaches the depth with the increase of erosion time.Compared with rectangular section concrete,circular section concrete penetrates faster.The results of this study can provide a reference for the durability design of concrete in saline soil sites containing sulfate.
    • Faesal Alatshan; Abdelmajeed Altlomate; Samie Hamad
    • 摘要: The development of Concrete Filled Plastic Tube (CFPT) Stub Columns, is commonly used in the areas where the concrete structures interact with marine and saline environments, compared to regular concrete columns. Several CFPT stub column samples were prepared to investigate their behaviour under certain loading conditions. The main objective of this study was to conduct an experimental investigation to observe the effect of using CFPT with different diameters on the final strength of the concrete columns. In order to achieve this target, two types of loading conditions were applied, including separate load on the concrete and combined load on the concrete and the plastic tube simultaneously. The study revealed a significant improvement in the compressive strength of CFPT columns with different diameters (70 - 100 - 150 mm). Overall results show that the use of CFPT columns provides better mechanical performance compared to ordinary concrete columns. An evaluation of using the available calculation methods to predict the load-carrying capacities of CFPT. The study suggested the use of CFPT columns in situations where common concrete may cause significant issues related to its deterioration and disintegration in response to severe weather conditions.
    • Mei Li; Hong Hao; Jian Cui; Yi-fei Hao
    • 摘要: Cylindrical specimens are commonly used in Split Hopkinson pressure bar(SHPB)tests to study the uniaxial dynamic properties of concrete-like materials.In recent years,true tri-axial SHPB equipment has also been developed or is under development to investigate the material dynamic properties under tri-axial impact loads.For such tests,cubic specimens are needed.It is well understood that static material strength obtained from cylinder and cube specimens are different.Conversion factors are obtained and adopted in some guidelines to convert the material streng th obtained from the two types of specimens.Previous uniaxial impact tests have also demonstrated that the failure mode and the strain rate effect of cubic specimens are very different from that of cylindrical ones.However,the mechanical background of these findings is unclear.As an extension of the previous laboratory study,this study performs numerical SHPB tests of cubic and cylindrical concrete specimens subjected to uniaxial impact load with the validated numerical model.The stress states of cubic specimens in relation to its failure mode under different strain rates is analyzed and compared with cylindrical specimens.The detailed analyses of the numerical simulation results show that the lateral inertial confinement of the cylindrical specimen is higher than that of the cubic specimen under the same strain rates.For cubic specimen,the corners aremore severely damaged because of the lower lateral confinement and the occurrence of the tensile radial stress which is not observed in cylindrical specimens.These results explain why the dynamic material strengths obtained from the two types of specimens are different and are strain rate dependent.Based on the simulation results,an empirical formula of conversion factor as a function of strain rate is proposed,which supplements the traditional conversion factor for quasi-static material strength.It can be used for transforming the dynamic compressive strength from cylinders to cubes obtained from impact tests at different strain rates.
    • Yumei Wang; Jianzhuang Xiao; Jintuan Zhang
    • 摘要: The emission of greenhouse gases from cement production is an obstacle for sustainable development of construction industry.The use of waste materials in constructions instead of cement could be a feasible solution to green construction.Waste marble powder with good cementing property can be used in concrete partially replace cement.In this research,the effects of using waste marble powder on the physical and mechanical properties of concrete have been studied.Three groups of particle size and five levels of replacement ratio(5%,10%,15%,20%,25%)for each group have been designed.During the different stage of hydration process,the microstructure,phase composition and thermal properties of marble-cement paste have been investigated,the influence of particle size of marble powder on these properties has been discussed.The compressive strength and stressstrain relation were tested for different series prepared by partially replacing cement at proportions of 5%–25%separately.From the data analysis,it was observed that the using of waste marble powder would affect the hydration products and further affect the mechanical properties of concrete,the addition of marble powder that partially replace the cement at particular proportions in concrete is feasible.
    • Malang Bodian; Dame Keinde; Ismaila Yade; Kinda Hannawi; Prince William Agbodjan; Modou Fall; Aveline Darquennes
    • 摘要: The valorization of Senegalese attapulgite clay in concrete, as a solution against the exhaustion of the cement deposits was studied. In that purpose, attapulgite was first calcined at 800°C to make it reactive and added in concrete by substitution of Portland cement (CEM I 52.5N) at contents of 0, 5 and 10% by conserving a constant water/cement ratio value of 0.65. The effects of the partial replacement of cement by attapulgite on the physicochemical and mechanical properties of the concrete as well as on the steel-concrete bond were examined. For this purpose, the water porosity, the intrinsic permeability and the density of the clay-based concrete were evaluated. Compression, tensile and pull-out tests were carried out to determine the impact of clay on the Young modulus, the compressive and tensile strengths and the steel-concrete bond. This study was completed by a characterization of the pozzolanic reactivity of calcined attapulgite. All the results of these studies were compared with those of Portland cement as a reference. The substitution of cement by attapulgite up to 10% in concrete has only a small influence on its porosity and permeability and confers to the concrete gain in compressive strength of 11%. However, it caused a loss of steel-concrete bond of 10%.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号