您现在的位置: 首页> 研究主题> 丙烯酸乙酯

丙烯酸乙酯

丙烯酸乙酯的相关文献在1989年到2022年内共计330篇,主要集中在化学工业、化学、轻工业、手工业 等领域,其中期刊论文170篇、会议论文14篇、专利文献158548篇;相关期刊108种,包括精细石油化工、石油化工、广州化工等; 相关会议13种,包括第十届全国化学工艺学术年会、中国化工学会精细化工专业委员会全国第126次学术会议暨第十届丙烯酸科技发展与应用研讨会暨全国丙烯酸行业年会、第三届全国试剂与应用技术交流会等;丙烯酸乙酯的相关文献由663位作者贡献,包括倪珏萍、莫振翼、朱琪等。

丙烯酸乙酯—发文量

期刊论文>

论文:170 占比:0.11%

会议论文>

论文:14 占比:0.01%

专利文献>

论文:158548 占比:99.88%

总计:158732篇

丙烯酸乙酯—发文趋势图

丙烯酸乙酯

-研究学者

  • 倪珏萍
  • 莫振翼
  • 朱琪
  • 黄金荣
  • 刁亚梅
  • G·温特
  • M·劳本德尔
  • 姜伟华
  • 马海军
  • 徐尚成
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 田翔; 田恒水
    • 摘要: 以不同焙烧温度制备了Cs/SBA-15催化剂,利用XRD、N2吸附/脱附、XPS、吡啶-FTIR和NH3-TPD等手段对催化剂结构和酸碱性质进行了测试,并在固定床反应器中考察了所制备催化剂在乙酸乙酯与甲醛发生羟醛缩合反应中的催化性能,研究了催化剂的物化性质与催化性能的关系.结果表明,随着焙烧温度的增加,硝酸铯逐渐分解并与表面硅羟基反应生成Si-O-Cs活性位,强碱性有利于主反应的进行,而弱酸性则有利于降低乙醇脱氢反应的负面影响,焙烧温度过高会导致碱性减弱和传质条件变差.焙烧温度为723 K的催化剂表现出较优的催化性能,其主产物总收率、总选择性、空时收率分别为62.2%、87.1%、23.0 mmol/(h·g).
    • 张欣; 宋襄翎; 王智彦
    • 摘要: 以苯乙烯、丙烯酸乙酯为主要单体,以十二烷基硫酸钠(SDS)和辛基苯酚聚-氧乙烯醚(OP-10)组成混合乳化体系,以过硫酸钾(KPS)为引发剂,采用半连续微乳液聚合的方式制备丙烯酸酯微乳液.考察了单体配比、聚合温度、乳化体系配比、引发剂等因素对乳液性能的影响.当单体配比为m(EA)∶m(MMA)=1∶1、聚合温度为75~76 °C、乳化剂用量共计25 g且SDS/OP-10=3∶2、引发剂用量为1.0 g,且采取聚合中期补加KPS溶液的方式补加、丙烯酸用量为3%,体系的pH值在7~8时制得的微乳液的产品性能最好.
    • 程敏; 林伟斌; 谭丽容
    • 摘要: 建立了同时检测香精中丙烯酸乙酯、反-2-庚烯醛、苄叉丙酮和对叔丁基苯酚4种禁用物质的气相色谱-质谱(GC-MS)方法,并对方法进行了验证.结果表明:该方法在0.0005 mg/mL到0.1000 mg/mL的质量浓度范围呈现良好的线性关系,相关系数均大于0.9900;回收率在95% ~113%之间,精密度在1.42% ~3.94%之间,检出限为0.005μg/mL(S/N≥3),满足痕量分析检测要求,可用于香精中禁用物质丙烯酸乙酯、反-2-庚烯醛、苄叉丙酮和对叔丁基苯酚的定性定量测定.应用该方法分析检测薄荷香精样品中的丙烯酸乙酯、反-2-庚烯醛、苄叉丙酮和对叔丁基苯酚,结果未发现阳性样品.
    • 吴婷; 李坚; 任强; 汪称意
    • 摘要: 以单质铜 (Cu0) 为还原剂, 采用电子转移生成催化剂原子转移自由基聚合 (ARGET ATRP) 合成了丙烯酸乙酯-co-3-甲基丙烯酰氧基丙基甲基二甲氧基硅烷 (DMMSPMA) 共聚物[P (EA-co-DMMSPMA) ]及其湿固化膜, 研究了P (EA-co-DMMSPMA) 分子量增加以及DMMSPMA含量对P (EA-co-DMMSPMA) 湿固化膜性能的影响.研究结果表明:随着P (EA-co-DMMSPMA) 分子量增大, 湿固化膜的拉伸强度增加, 断裂伸长率略有上升, 玻璃化转变温度升高.在P (EA-co-DMMSPMA) 分子量为10000, DMMSPMA含量为25% (wt, 质量分数) 条件下, 其拉伸强度为2.09MPa, 断裂伸长率为33%, 玻璃化转变温度为4.18°C.%(Ethyl acrylate-co-3-methacryloyloxypropylmethyldimethoxysilane) copolymer[P (EA-co-DMMSPMA) ]and their moisture cured crosslinked films were synthesized via activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) using copper (Cu0) as a reducing agent.The effects of increase in the molecular weight of P (EA-co-DMMSPMA) and the content of 3-methacryloyloxypropylmethyldimethoxysilane (DMMSPMA) on the properties of moisture cured crosslinked films were investigated.The results showed that with the increment of molecular weight of P (EA-co-DMMSPMA), the tensile strength of films increased, the elongation at break slightly increased, and the glass transition temperature increased.When the molecular weight of P (EA-co-DMMSPMA) was10000 and the content of DMMSPMA was 25 wt% (wt, mass fraction), the tensile strength was 2.09 MPa, the elongation at break was 33%, and the glass transition temperatures was 4.18°C.
    • 付婷; 田翔; 王斌斌; 田恒水
    • 摘要: 以SBA-15为载体负载质量分数5%的Cs为催化剂,甲醛(三聚甲醛作为供体)与乙酸乙酯通过气相羟醛缩合反应制取丙烯酸乙酯.对溶剂类型及用量、酯醛物质的量比、反应温度、液时空速及载气流量等工艺条件进行考察.研究表明在工艺条件为醇醛物质的量比1:1、酯醛物质的量比2.5:1、反应温度400°C、液时空速1.5h-1、载气流量50mL/min时反应效果最优,此时乙酸乙酯的转化率为34.3%,对丙烯酸乙酯的选择性为15.2%.
    • 李冠霖
    • 摘要: 采用活性炭吸附采样,二硫化碳解吸,经毛细管色谱柱分离,以气相色谱法测定3种酯的含量.本方法样品处理简便快速,灵敏度和精密度高,检出限低,测定结果准确可靠,适用于环境空气中丙烯酸甲酯、丙烯酸乙酯和丙烯酸丙酯的监测.
    • 赵洲
    • 摘要: 丙烯酸乙氧基酯类分子结构特殊,含有不饱和双键、醚键等官能团,已广泛应用于涂料、减水剂、医药等诸多领域.以丙烯酸乙酯和环氧乙烷为原料,通过一步烷氧基化法合成丙烯酸乙氧基乙酯,避免了传统方法的局限性,同时提高产品的质量,也可以解决国内相关技术落后的现状具有广阔的应用前景.
    • 康婧娟; 汤吉海; 费兆阳; 张竹修; 陈献; 崔咪芬; 乔旭
    • 摘要: 以γ-Al2O3为载体,KNO3为前驱体,制备了不同负载量的固体碱催化剂K2O/Al2O3,并用于丙烯酸乙酯(EA)和乙醇加成制备3-乙氧基丙酸乙酯(EEP)反应研究.XRD、FT-IR、N2吸附-脱附和CO2-TPD表征结果表明,K2O/Al2O3具有强弱两种碱性位,分别是KNO3高温焙烧下分解生成的强碱性位K2O和KNO3与载体相互作用形成的弱碱性位K-O-Al;提高KNO3负载量可增加催化剂碱量,但破坏载体结构,降低催化剂比表面积和孔容.加成反应结果表明,30%(wt)K2O/Al2O3具有最高的催化活性,当反应温度为70°C,乙醇和EA摩尔比为6:1,催化剂用量为EA的10%(wt)时,EA的转化率为53.6%,EEP的选择性为98.8%.重复性实验表明,强碱性位中的K2O与乙醇发生反应生成乙醇钾,进一步溶解于反应液,导致活性位流失,催化剂重复使用活性显著降低.将流失的钾再次浸渍负载到失活催化剂上,可以恢复失活的催化剂活性.因此,开发直接稳定乙醇钾的固体碱催化剂是重要的研究方向.%Solid alkaline catalysts K2O/Al2O3 with different loading ratios were prepared using γ-alumina as a support and KNO3 as a precursor, which were used in ethyl 3-ethoxypropionate synthesis. XRD, FT-IR, N2 adsorption-desorption and CO2-TPD results reveal that the catalyst has two alkaline sites. The strong alkaline site (K2O) is derived from KNO3 decomposition while the weak one (K-O-Al) is from the interaction betweenγ-alumina and KNO3. The increase of KNO3 enhances overall basicity of the catalyst, but it breaks the support by decreasing its specific surface area and pore volume. When K2O loading is 30%(wt), reaction temperature is 70°C, mole ratio of ethanol / ethyl acrylate is 6:1 and catalyst usage is 10%(wt) of ethyl acrylate, 53.6% of ethyl acrylate can be converted to EEP with selectivity of 98.8%. However, recycling tests reveal that K2O can irreversibly react with ethanol to form potassium ethoxide that subsequently dissolves in the reaction solution, which results in deterioration of catalytic performance in the following cycles. Reloading of equimolar K2O onto the used catalyst can effectively regenerate the deactivated catalyst. Therefore, solid alkaline catalysts with permanently immobilized potassium ethoxide are of great interests.
    • 钱江涛; 李婷; 汪洋; 东为富
    • 摘要: 利用丙烯酰氯与淀粉反应制备酯化淀粉,再以丙烯酸乙酯(EA)为单体与酯化淀粉聚合制备酯化淀粉-g -丙烯酸乙酯(S-g -EA)接枝共聚物。红外光谱证明了酯化淀粉制备成功;通过用差示扫描量热仪、热重分析仪、万能试验机对该淀粉接枝物的熔点、热分解以及力学性能进行表征。结果表明,通过对淀粉的酯化和接枝,改善了淀粉基材料难塑化和耐水性差的缺点,在不加增塑剂的情况下成功制备了淀粉基弹性体,其力学性能优异。%In this paper,the acryloyl chloride was used to react with starch to prepare esterified starch.Then the graft copolymers (S-g -EA)were prepared with ethyl acrylate (EA)as grafting mo-nomer.Infrared spectroscopy results showed that the esterified starch was successfully prepared.The melting point,thermal decomposition and mechanical properties of the grafting monomer were investi-gated by DSC,TGA and Universal testing machine,etc.The results showed that the processing and water resistance of starch were improved through esterifying and grafting of starch.Starch-based elas-tomers with excellent mechanical properties were successfully prepared without adding plasticizer.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号