您现在的位置: 首页> 研究主题> brain

brain

brain的相关文献在1992年到2023年内共计532篇,主要集中在肿瘤学、神经病学与精神病学、外科学 等领域,其中期刊论文529篇、会议论文1篇、专利文献2篇;相关期刊207种,包括世界胃肠病学杂志:英文版、中国神经再生研究:英文版、健康(英文)等; 相关会议1种,包括中国电子学会信息论分会第十三届学术年会等;brain的相关文献由1786位作者贡献,包括Dingyu Chung、Leo Depuydt、Margit Pissarek等。

brain—发文量

期刊论文>

论文:529 占比:99.44%

会议论文>

论文:1 占比:0.19%

专利文献>

论文:2 占比:0.38%

总计:532篇

brain—发文趋势图

brain

-研究学者

  • Dingyu Chung
  • Leo Depuydt
  • Margit Pissarek
  • 张赛
  • Aurélien Ndoumbe
  • Ehsan Kamrani
  • Elio Conte
  • Evgeny A. Yumatov
  • Mohamad Sawan
  • Sergio Conte
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

期刊

关键词

    • Marta Garcia-Contreras; Avnesh S.Thakor
    • 摘要: Alzheimer’s disease is a progressive and fatal neurodegenerative disorder that starts many years before the onset of cognitive symptoms.Identifying novel biomarkers for Alzheimer’s disease has the potential for patient risk stratification,early diagnosis,and disease monitoring in response to therapy.A novel class of biomarkers is extracellular vesicles given their sensitivity and specificity to specific diseases.In addition,extracellular vesicles can be used as novel biological therapeutics given their ability to efficiently and functionally deliver therapeutic cargo.This is critical given the huge unmet need for novel treatment strategies for Alzheimer’s disease.This review summarizes and discusses the most recent findings in this field.
    • Najam A.Sharif
    • 摘要: Cellular and mitochondrial membrane phospholipids provide the substrate for synthesis and release of prostaglandins in response to certain chemical,mechanical,noxious and other stimuli.Prostaglandin D_(2),prostaglandin E_(2),prostaglandin F_(2)α,prostaglandin I_(2)and thromboxane-A_(2)interact with five major receptors(and their sub-types)to elicit specific downstream cellular and tissue actions.In general,prostaglandins have been associated with pain,inflammation,and edema when they are present at high local concentrations and involved on a chronic basis.However,in acute settings,certain endogenous and exogenous prostaglandins have beneficial effects ranging from mediating muscle contraction/relaxation,providing cellular protection,regulating sleep,and enhancing blood flow,to lowering intraocular pressure to prevent the development of glaucoma,a blinding disease.Several classes of prostaglandins are implicated(or are considered beneficial)in certain central nervous system dysfunctions(e.g.,Alzheimer’s,Parkinson’s,and Huntington’s diseases;amyotrophic lateral sclerosis and multiple sclerosis;stroke,traumatic brain injuries and pain)and in ocular disorders(e.g.,ocular hypertension and glaucoma;allergy and inflammation;edematous retinal disorders).This review endeavors to address the physiological/pathological roles of prostaglandins in the central nervous system and ocular function in health and disease,and provides insights towards the therapeutic utility of some prostaglandin agonists and antagonists,polyunsaturated fatty acids,and cyclooxygenase inhibitors.
    • Brian Noh; Louise D.McCullough; Jose F.Moruno-Manchon
    • 摘要: Stroke is the second leading cause of death and a major cause of disability worldwide,and biological sex is an important determining factor in stroke incidence and pathology.From childhood through adulthood,men have a higher incidence of stroke compared with women.Abundant research has confirmed the beneficial effects of estrogen in experimental ischemic stroke but genetic factors such as the X-chromosome complement can also play an important role in determining sex differences in stroke.Autophagy is a self-degrading cellular process orchestrated by multiple core proteins,which leads to the engulfment of cytoplasmic material and degradation of cargo after autophagy vesicles fuse with lysosomes or endosomes.The levels and the activity of components of these signaling pathways and of autophagy-related proteins can be altered during ischemic insults.Ischemic stroke activates autophagy,however,whether inhibiting autophagy after stroke is beneficial in the brain is still under a debate.Autophagy is a potential mechanism that may contribute to differences in stroke progression between the sexes.Furthermore,the effects of manipulating autophagy may also differ between the sexes.Mechanisms that regulate autophagy in a sex-dependent manner in ischemic stroke remain unexplored.In this review,we summarize clinical and pre-clinical evidence for sex differences in stroke.We briefly introduce the autophagy process and summarize the effects of gonadal hormones in autophagy in the brain and discuss X-linked genes that could potentially regulate brain autophagy.Finally,we review pre-clinical studies that address the mechanisms that could mediate sex differences in brain autophagy after stroke.
    • Sharmony B.Kelly; Elys Green; Rod W.Hunt; Claudia A.Nold-Petry; Alistair J.Gunn; Marcel F.Nold; Robert Galinsky
    • 摘要: Perinatal inflammation is a significant risk factor for lifelong neurodevelopmental impairments such as cerebral palsy.Extensive clinical and preclinical evidence links the severity and pattern of perinatal inflammation to impaired maturation of white and grey matters and reduced brain growth.Multiple pathways are involved in the pathogenesis of perinatal inflammation.However,studies of human and experimental perinatal encephalopathy have demonstrated a strong causative link between perinatal encephalopathy and excessive production of the pro-inflammatory effector cytokine interleukin-1.In this review,we summarize clinical and preclinical evidence that underpins interleukin-1 as a critical factor in initiating and perpatuating systemic and central nervous system inflammation and subsequent perinatal brain injury.We also highlight the important role of endogenous interleukin-1 receptor antagonist in mitigating interleukin-1-driven neuroinflammation and tissue damage,and summarize outcomes from clinical and mechanistic animal studies that establish the commercially available interleukin-1 receptor antagonist,anakinra,as a safe and effective therapeutic intervention.We reflect on the evidence supporting clinical translation of interleukin-1 receptor antagonist for infants at the greatest risk of perinatal inflammation and impaired neurodevelopment,and suggest a path to advance interleukin-1 receptor antagonist along the translational path for perinatal neuroprotection.
    • Itzel Ortiz Flores; Samuel Treviño; Alfonso Díaz
    • 摘要: Aging is a global phenomenon and a complex biological process of all living beings that introduces various changes.During this physiological process,the brain is the most affected organ due to changes in its structural and chemical functions,such as changes in plasticity and decrease in the number,diameter,length,and branching of dendrites and dendritic spines.Likewise,it presents a great reduction in volume resulting from the contraction of the gray matter.Consequently,aging can affect not only cognitive functions,including learning and memory,but also the quality of life of older people.As a result of the phenomena,various molecules with notable neuroprotective capacity have been proposed,which provide a therapeutic alternative for people under conditions of aging or some neurodegenerative diseases.It is important to indicate that in recent years the use of molecules with neurotrophic activity has shown interesting results when evaluated in in vivo models.This review aims to describe the neurotrophic potential of molecules such as resveratrol(3,5,4′-trihydroxystilbene),neurotrophins(brain-derived neurotrophic factor),and neurotrophic-type compounds such as the terminal carboxyl domain of the heavy chain of tetanus toxin,cerebrolysin,neuropeptide-12,and rapamycin.Most of these molecules have been evaluated by our research group.Studies suggest that these molecules exert an important therapeutic potential,restoring brain function in aging conditions or models of neurodegenerative diseases.Hence,our interest is in describing the current scientific evidence that supports the therapeutic potential of these molecules with active neurotrophic.
    • Ying-Jie Wang; Yan-Rong Sun; Yan-Hong Pei; Hao-Wen Ma; Ya-Kun Mu; Li-Hua Qin; Jun-Hao Yan
    • 摘要: Recent studies have proposed three lymphatic drainage systems in the brain,that is,the glymphatic system,the intramural periarterial drainage pathway,and meningeal lymphatic vessels,whose roles in various neurological diseases have been widely explored.The glymphatic system is a fluid drainage and waste clearance pathway that utilizes perivascular space and aquaporin-4 protein located in the astrocyte endfeet to provide a space for exchange of cerebrospinal fluid and interstitial fluid.The intramural periarterial drainage pathway drives the flow of interstitial fluid through the capillary basement membrane and the arterial tunica media.Meningeal lymphatic vessels within the dura mater are involved in the removal of cerebral macromolecules and immune responses.After ischemic stroke,impairment of these systems could lead to cerebral edema,accumulation of toxic factors,and activation of neuroinflammation,while restoration of their normal functions can improve neurological outcomes.In this review,we summarize the basic concepts of these drainage systems,including drainage routes,physiological functions,regulatory mechanisms,and detection technologies.We also focus on the roles of lymphatic drainage systems in brain injury after ischemic stroke,as well as recent advances in therapeutic strategies targeting these drainage systems.These findings provide information for potential novel strategies for treatment of stroke.
    • Muneeb A.Faiq; Trina Sengupta; Madhu Nath; Thirumurthy Velpandian; Daman Saluja; Rima Dada; Tanuj Dada; Kevin C.Chan
    • 摘要: Central insulin resistance, the diminished cellular sensitivity to insulin in the brain, has been implicated in diabetes mellitus, Alzheimer’s disease and other neurological disorders. However, whether and how central insulin resistance plays a role in the eye remains unclear. Here, we performed intracerebroventricular injection of S961, a potent and specific blocker of insulin receptor in adult Wistar rats to test if central insulin resistance leads to pathological changes in ocular structures. 80 mg of S961 was stereotaxically injected into the lateral ventricle of the experimental group twice at 7 days apart, whereas buffer solution was injected to the sham control group. Blood samples, intraocular pressure, trabecular meshwork morphology, ciliary body markers, retinal and optic nerve integrity, and whole genome expression patterns were then evaluated. While neither blood glucose nor serum insulin level was significantly altered in the experimental or control group, we found that injection of S961 but not buffer solution significantly increased intraocular pressure at 14 and 24 days after first injection, along with reduced porosity and aquaporin 4 expression in the trabecular meshwork, and increased tumor necrosis factor α and aquaporin 4 expression in the ciliary body. In the retina, cell density and insulin receptor expression decreased in the retinal ganglion cell layer upon S961 injection. Fundus photography revealed peripapillary atrophy with vascular dysregulation in the experimental group. These retinal changes were accompanied by upregulation of pro-inflammatory and pro-apoptotic genes, downregulation of anti-inflammatory, anti-apoptotic, and neurotrophic genes, as well as dysregulation of genes involved in insulin signaling. Optic nerve histology indicated microglial activation and changes in the expression of glial fibrillary acidic protein, tumor necrosis factor α, and aquaporin 4. Molecular pathway architecture of the retina revealed the three most significant pathways involved being inflammation/cell stress, insulin signaling, and extracellular matrix regulation relevant to neurodegeneration. There was also a multimodal crosstalk between insulin signaling derangement and inflammation-related genes. Taken together, our results indicate that blocking insulin receptor signaling in the central nervous system can lead to trabecular meshwork and ciliary body dysfunction, intraocular pressure elevation, as well as inflammation, glial activation, and apoptosis in the retina and optic nerve. Given that central insulin resistance my lead to neurodegenerative phenotype in the visual system, targeting insulin signaling may hold promise for vision disorders involving the retina and optic nerve.
    • Hui-Yi Zhang; Ye Tian; Han-Yan Shi; Ya Cai; Ying Xu
    • 摘要: Cerebral ischemia is a serious disease that triggers sequential pathological mechanisms, leading to significant morbidity and mortality. Although most studies to date have typically focused on the lysosome, a single organelle, current evidence supports that the function of lysosomes cannot be separated from that of the endolysosomal system as a whole. The associated membrane fusion functions of this system play a crucial role in the biodegradation of cerebral ischemia-related products. Here, we review the regulation of and the changes that occur in the endolysosomal system after cerebral ischemia, focusing on the latest research progress on membrane fusion function. Numerous proteins, including N-ethylmaleimide-sensitive factor and lysosomal potassium channel transmembrane protein 175, regulate the function of this system. However, these proteins are abnormally expressed after cerebral ischemic injury, which disrupts the normal fusion function of membranes within the endolysosomal system and that between autophagosomes and lysosomes. This results in impaired “maturation” of the endolysosomal system and the collapse of energy metabolism balance and protein homeostasis maintained by the autophagy-lysosomal pathway. Autophagy is the final step in the endolysosomal pathway and contributes to maintaining the dynamic balance of the system. The process of autophagosome-lysosome fusion is a necessary part of autophagy and plays a crucial role in maintaining energy homeostasis and clearing aging proteins. We believe that, in cerebral ischemic injury, the endolysosomal system should be considered as a whole rather than focusing on the lysosome. Understanding how this dynamic system is regulated will provide new ideas for the treatment of cerebral ischemia.
    • Chia-Wei Huang; Nicholas C.Rust; Hsueh-Fu Wu; Gerald W.Hart
    • 摘要: Alzheimer’s disease is a neurodegenerative disease that affected over 6.5 million people in the United States in 2021,with this number expected to double in the next 40 years without any sort of treatment.Due to its heterogeneity and complexity,the etiology of Alzheimer’s disease,especially sporadic Alzheimer’s disease,remains largely unclear.Compelling evidence suggests that brain glucose hypometabolism,preceding Alzheimer’s disease hallmarks,is involved in the pathogenesis of Alzheimer’s disease.Herein,we discuss the potential causes of reduced glucose uptake and the mechanisms underlying glucose hypometabolism and Alzheimer’s disease pathology.Specifically,decreased O-Glc NAcylation levels by glucose deficiency alter mitochondrial functions and together contribute to Alzheimer’s disease pathogenesis.One major problem with Alzheimer’s disease research is that the disease progresses for several years before the onset of any symptoms,suggesting the critical need for appropriate models to study the molecular changes in the early phase of Alzheimer’s disease progression.Therefore,this review also discusses current available sporadic Alzheimer’s disease models induced by metabolic abnormalities and provides novel directions for establishing a human neuronal sporadic Alzheimer’s disease model that better represents human sporadic Alzheimer’s disease as a metabolic disease.
    • Margherita Alfonsetti; Michele d’Angelo; Vanessa Castelli
    • 摘要: Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline.This process represents the major risk factor for aging-related diseases such as Alzheimer’s disease,Parkinson’s disease,and ischemic stroke.The incidence of all these pathologies increases exponentially with age.Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies.Cognitive deficit and neurodegeneration,common features of aging-related pathologies,are related to the alteration of the activity and levels of neurotrophic factors,such as brain-derived neurotrophic factor,nerve growth factor,and glial cell-derived neurotrophic factor.For this reason,treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases.Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors,neurotrophins’binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies.Considering neurotrophins’crucial role in aging pathologies,here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号