您现在的位置: 首页> 研究主题> RPC模型

RPC模型

RPC模型的相关文献在2004年到2022年内共计75篇,主要集中在测绘学、自动化技术、计算机技术、无线电电子学、电信技术 等领域,其中期刊论文56篇、会议论文5篇、专利文献145928篇;相关期刊32种,包括池州学院学报、青海师范大学学报(自然科学版)、测绘工程等; 相关会议2种,包括2011成像雷达对地观测高级学术研讨会、广东省测绘学会第九次会员代表大会暨学术交流会等;RPC模型的相关文献由180位作者贡献,包括张过、刘军、秦绪文等。

RPC模型—发文量

期刊论文>

论文:56 占比:0.04%

会议论文>

论文:5 占比:0.00%

专利文献>

论文:145928 占比:99.96%

总计:145989篇

RPC模型—发文趋势图

RPC模型

-研究学者

  • 张过
  • 刘军
  • 秦绪文
  • 李德仁
  • 祝小勇
  • 唐新明
  • 姜挺
  • 江万寿
  • 王海侠
  • 胡小华
  • 期刊论文
  • 会议论文
  • 专利文献

搜索

排序:

年份

    • 赵勇; 王小梅; 蒋俊华
    • 摘要: 数字正射影像图是数字城市的基础内容,对数据源类型多、时效要求短的高程相近的大范围平原区域进行卫星影像数字正射影像生产时,面临着生产效率与质量的双重挑战。本文提出了一套适应于平原区域多源卫星影像高时效正射影像产品生产方法,在正射纠正过程中将RPC模型与二次多项式模型组合使用,利用高时效性DEM细化成果进行单景影像纠正,研发影像预处理算法和镶嵌算法,进行整体匀光匀色。相关算法与流程在天津市2018年数字正射影像图生产中得到验证,可为相似区域大批量正射影像产品生产提供借鉴。
    • 辛宪会; 闸旋; 滕惠忠; 李海滨; 郭忠磊
    • 摘要: 面向海岸带区域遥感影像图件制作及更新的实际需求,本文针对海岸带地形特点设计了总体技术流程图,实现了天绘一号、资源三号以及高分二号卫星影像融合的技术方法.选择典型海岸带区域进行了融合增强实验,验证了本方法的可靠性和有效性,为自主遥感卫星影像数据应用于海洋测绘领域奠定了技术基础.
    • 张铮; 孙建军
    • 摘要: 针对不同类型遥感影像的构像模型种类很多,本文设计了一种自适应选择机制,为不同的影像选择最合适的构像模型,以构建出最佳的"复合式"立体定位方程组.此外,与传统的立体定位方法不同,"复合式"立体定位方程组中各个方程的形式不同,在方程组解算过程中权阵对结果的影响将非常显著.通过实验分析发现复合式立体定位确实可以提高高分辨率遥感影像的几何定位精度.
    • 汤敏; 高小红; 申振宇
    • 摘要: 面对地物特征不明显的复杂地形区,同时无条件获得高精度数字正射影像和大比例尺地形图等参考资料的情况下,基于有理函数的RPC模型对高分辨率进行正射纠正也能达到满意的精度.本文基于RPC模型,利用有限的野外实测控制点和Google Earth平台控制点三种方案对覆盖复杂地形区湟水流域的SPOT6影像进行正射纠正.研究结果表明:基于手持GPS的正射影像平面中误差为9.0m;基于Google Earth纠正的正射影像平面误差为6.6m;以手持GPS为基准结合Google Earth数据纠正的正射影像的平面误差为4.9m.方案三纠正结果精度最高,初步验证了基于有理函数的RPC模型纠正精度较为稳定,以及增加控制点数量以及均匀分布能明显提高影像的纠正精度.在地面控制点布设数量不足以及不均匀的情况下补充部分Google Earth数据进行正射纠正是一种有效的方法.
    • 潘雪琛; 姜挺; 余岸竹; 张一; 余林怡
    • 摘要: 针对国产卫星境外定位的实际需要,提出利用Google Earth数据量测控制点辅助高分辨率遥感影像区域网平差的方法.首先统一坐标系,将所量测的控制点高程坐标转换为大地高;然后将其视为精度较低的控制点参与平差.试验分为无地面控制点和布设稀少地面控制点两种情况,对于每种情况分别设计不同的试验方案分析Google Earth数据对于定位精度的影响.结果表明利用Google Earth数据辅助区域网平差可以明显提高定位精度,可为缺少地面控制点的境外地区的光学线阵遥感影像几何定位提供新的思路.%In response to the actual requirements of geo-positioning at abroad of domestic satellite images,a method of block adjustment of high-resolution satellite images with control points measured by Google Earth was proposed.Firstly,the coordinate system was united by transforming the altitude of measured control points into geodetic height,then the measured control points were used as control points with low accuracy in block adjustment.The experiments were divided into two cases which were without ground control points and with few.Several schemes were proposed for two cases to analyze the effects on geo-positioning accuracy by Google Earth.Experimental results indicated that the geo-positioning accuracy of this method was increased obviously.The proposed method in this paper provided a new way for geo-positioning at abroad of optical satellite images without enough ground control points.
    • 靳海亮; 杨贯伟; 刘军; 臧文乾; 周珂
    • 摘要: 针对GF-1卫星影像正射纠正后相邻影像接边精度不高,容易出现错位问题,提出利用SIFT算法自动提取控制点和连接点,区域网平差的方法进行区域正射纠正.通过GF-1卫星WFV传感器卫星影像的区域正射纠正试验表明,采用SIFT算法可以自动提取大量的控制点和连接点,影像定位精度在航向方向和扫描方向的RMS值均小于1个像素,相邻影像接边达到了无缝拼接的水平,效果较好.
    • 叶思菁; 张超; 王媛; 刘帝佑; 杜振博; 朱德海
    • 摘要: 近年来随着遥感数据的爆炸性增长,快速、稳定的自动化影像正射校正成为遥感大数据处理的重要环节.该文在分析GF-1遥感大数据组织方式与元数据特征的基础上,将有理多项式模型正反变换与数字高程数据提取结合,设计实现自动化正射校正系统,并以提高正射校正计算效率与稳定性为目标,研究待校正影像对应数字高程数据快速提取方法,待校正影像分块读取策略等关键问题.在此基础上针对20景覆盖不同地形区域GF-18 m多光谱正射校正影像选择均匀分布的检查点,以Google Earth影像中同名点坐标为真值,分析校正误差及收敛情况,试验结果X(纬线方向)方向和Y(经线方向)方向最大误差均小于16.863 m,距离误差小于23 m,并且92.25%的检查点误差小于16 m(2个像元).该文提出的自动化正射校正方案在山地地形与平原地形均表现出良好的校正精度与稳定性.%Remote-sensing imaging is a complicated process. It is influenced by many factors like optical distortion, sensor attitude change, satellite platform movement, curvature change of the earth, terrain fluctuation, and so on, which cause geometric distortion such as excursion, extension, and shrink compared with location of real ground objects, and the extent of distortion turns severe with the increase of distance between pixel and sub-satellite point. Therefore in practical application, correcting geometric distortion caused by terrain fluctuation or satellite platform, becomes one of the basic works. We analyzed data organizing mode and metadata structure of GF-1 satellite image data, and on that basis RPC (rational polynomial coefficient) model-based forward and inverse transformation was combined with the DEM (digital elevation model) data extraction; the process of RPC model-based images orthorectification was elaborately calculated; automatic orthorectification system (GF1AMORS) were designed and implemented, which could fit 2, 8 and 16 m resolution images. There are the critical questions: 1) Method for DEM data rapid extraction; 2) Strategy for image blocking. Firstly, DEM data were reorganized and coded based on 0.5°×0.5° geographic grid system in order that DEM data could be read to system memory rapidly according to coordinate range of image being rectified, and relevant test showed that our grid-based DEM data dynamical extraction method could achieve good efficiency with different image range, while the system memory might overflow when the image range turned larger than 3.5°×3.5°. Secondly, comparative experiments were done to study the relation between image block size and orthographic correction efficiency of GF-1 WFV (wide field of view, 16 m resolution) multi-spectral images. Experiments showed that the computational efficiency of single image converged to 98 s when the block size was set as from 384×384 to 480×480. To test the conversion accuracy of our automatic orthorectification process, 20 GF-1 PMS (Pansharpen/Multispectral Sensor, 8 m resolution) multi-spectral images that covered area with different terrain features (mountainous and plain terrain) in Heilongjiang Province with less cloud were extracted, and on that basis 400 control points were selected and compared to their homonymy points selected in Google Earth (by ENVI "SPEAR Google Earth Bridge") to analyze error and convergence. The experiment showed that our automatic orthorectification process exhibited a nice accuracy and stability in both mountainous terrain and plain terrain: For mountainous terrain, the maximum error inXorientation was less than 16.863 m and inY orientation was less than 16.811 m, and the standard deviation inX orientation was less than 5.514 m while that inY orientation was between 2.872 and 4.336 m; for plain terrain, the maximum error inX orientation was less than 10.959 m and in Y orientation was less than 13.546 m, and the standard deviation inX orientation was less than 3.051 m while that inY orientation was less than 3.761 m. The maximum distance error was 23 m, and the distance error of 92.25% control points was less than 16 m (namely 2 pixels), and that of 38.75% control points was less than 8 m (namely 1 pixel). At last, we presented the limitation and our future work about our automatic orthorectification method. Considering that there is no physical significance for each parameter of RPC model, the calibration precision of our system needs to be improved (e.g. by integrating control points to weaken the system error) before it is used in some applications with higher accuracy requirement; furthermore, there is still a large optimization space of computational efficiency for our system, and high performance computing method (e.g. graphics processing unit) will be integrated based on data block feature to improve the calculating speed.
    • 刘楚斌; 范大昭; 雷蓉; 戴海涛
    • 摘要: 根据RPC模型和像方仿射变换模型,构建卫星遥感影像区域网平差的数学模型。按照所构建的数学模型,利用安平地区的同轨三景影像进行空间前方交会和SRTM辅助下RPC模型区域网平差处理。实验表明,在SRTM辅助下,采用RPC模型区域网平差可提高卫星立体定位精度。%Considering the RPC model and the affine transformation model, a math model of satellite remote imagery block adjustment was constructed.According to the math model, three images of one trip in Anping area were used to make space intersection and RPC model block adjustment with STRM.The results showed that the RPC model block adjustment with SRTM can improve the stereo loca-tion precision.
  • 查看更多

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号