-
1.[标准] 原子重力仪性能要求和测试方法发布单位:
中国-国家标准(CN-GB)
标准状态:现行
标准号:GB/T 43740-2024
发布时间:2024-03-15
中标分类:A53 力学计量
国标分类:17.100 力、重力和压力的测量
实施时间:2024-10-01
摘要: 本文件规定了原子重力仪性能指标要求,描述了原子重力仪性能指标的测试方法。
本文件适用于不同原子重力仪的性能评价和测试。获取标准 -
2.[标准] 电子人体秤发布单位:
中国-行业标准-轻工(CN-QB)
标准状态:现行
标准号:QB/T 2065-2023
发布时间:2023-07-28
中标分类:N13 仪器、仪表 - 工业自动化仪表与控制装置 - 机械量仪表、自动秤重装置与其他检测仪表
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2024-02-01
-
3.[标准] 无转子硫化仪校准规范发布单位:
中国-河北省地方标准(CN-DB13)
标准状态:现行
标准号:DB1311/T 040-2023
发布时间:2023-12-08
中标分类:N74 仪器、仪表 - 试验机与无损探伤仪器 - 力与变形测试仪器
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2023-12-08
摘要: 本文件规定了无转子硫化仪(以下简称硫化仪)校准的计量特性、条件、项目和方法、结果的表达、复校时间间隔。本文件适用于衡水市满足GB/T 16584、GB/T 9869、HG/T 3709要求的测定混炼胶胶料硫化特性的橡胶无转子硫化仪的校准 -
4.[标准] 附着力测试仪(拉拔法)校准规范发布单位:
中国-河北省地方标准(CN-DB13)
标准状态:现行
标准号:DB1311/T 039-2023
发布时间:2023-12-08
中标分类:N74 仪器、仪表 - 试验机与无损探伤仪器 - 力与变形测试仪器
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2023-12-08
摘要: 本文件规定了附着力测试仪(拉拔法)(以下简称附着力测试仪)校准的计量特性、条件、项目和方法、结果的表达、复校时间。本文件适用于衡水市满足GB/T 1720、GB/T 5210要求的测定漆膜附着力的附着力测试仪的校准 -
5.[标准] 机器人多维力/力矩传感器检测规范发布单位:
中国-国家标准(CN-GB)
标准状态:现行
标准号:GB/T 43199-2023
发布时间:2023-09-07
中标分类:L15 电子元器件与信息技术 - 电子元件 - 敏感元器件及传感器
国标分类:25.040.30 工业自动化系统 - 工业机器人、机械手
17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2024-04-01
摘要: 本文件规定了机器人多维力/力矩传感器检测条件,描述了一般性能与特殊性能的检测方法。
本文件适用于机器人使用的多维力/力矩传感器检测。获取标准 -
6.[标准] 电子称重仪表发布单位:
中国-国家标准(CN-GB)
标准状态:现行
标准号:GB/T 7724-2023
发布时间:2023-11-27
中标分类:N13 仪器、仪表 - 工业自动化仪表与控制装置 - 机械量仪表、自动秤重装置与其他检测仪表
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2024-06-01
摘要: 本文件规定了电子称重仪表(以下简称仪表)的技术要求、计量要求、检验规则及标志、包装、运输、贮存等要求,界定了术语和定义、分类和编码,并描述了试验方法。
本文件适用于非自动衡器中采用的中准确度等级和普通准确度等级电子称重仪表。获取标准 -
7.[标准] 设备结构健康监测 基于光纤传感技术的应力监测方法发布单位:
中国-国家标准计划(CN-PLAN)
标准状态:正在起草
标准号:20230727-T-469
发布时间:2023-08-06
中标分类:-
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间: -
8.[标准] 带浮子流量计的气体减压器检测装置发布单位:
中国-团体标准(CN-TUANTI)
标准状态:现行
标准号:T/QGCML 2191-2023
发布时间:2023-11-14
中标分类:-
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2023-11-29
摘要: 主要技术内容:本文件规定了带浮子流量计的气体减压器检测装置的术语和定义、技术要求、试验方法、检验规则、标志、包装、运输及贮存。本文件适用于带浮子流量计的气体减压器检测装置的生产及检验 -
9.[标准] 电子台秤发布单位:
中国-团体标准(CN-TUANTI)
标准状态:现行
标准号:T/QGCML 1103-2023
发布时间:2023-07-27
中标分类:-
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2023-08-11
摘要: 主要技术内容:本文件规定了电子台秤的术语和定义、型号、计量要求、技术要求、试验方法、检验规则、标志、包装、运输及贮存。本文件适用于由称重传感器为一次转换元件与承载器、电子装置、数字显示装置组成的数字指示式电子台秤(以下简称“秤”) -
10.[标准] 瓶装在线动态检测机发布单位:
中国-团体标准(CN-TUANTI)
标准状态:现行
标准号:T/CASME 477-2023
发布时间:2023-06-29
中标分类:N 仪器、仪表
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2023-07-01
摘要: 范围:本文件适用于食品、日化等行业用瓶装在线动态检测机的制造和检验;主要技术内容:本文件规定了瓶装在线动态检测机的型号及组成、总体要求、技术要求、试验方法、检验规则、标志、包装、运输和贮存 -
11.[标准] 智能电子体重秤发布单位:
中国-团体标准(CN-TUANTI)
标准状态:现行
标准号:T/CIET 221-2023
发布时间:2023-09-01
中标分类:-
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2023-09-01
摘要: 范围:本文件规定了智能电子体重秤的术语与定义、功能、产品要求、计量要求、技术要求、检验方法、检验规则、标志、包装、运输和贮存。本文件适用于智能电子体重秤;主要技术内容:本文件规定了智能电子体重秤的术语与定义、功能、产品要求、计量要求、技术要求、检验方法、检验规则、标志、包装、运输和贮存。本文件适用于智能电子体重秤 -
12.[标准] 汽车衡生产技术规范发布单位:
中国-团体标准(CN-TUANTI)
标准状态:现行
标准号:T/QGCML 710-2023
发布时间:2023-03-29
中标分类:-
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2023-04-15
摘要: 主要技术内容:本标准规定了汽车衡生产技术规范的术语定义、代号及命名、基本要求、生产流程、试验方法、检验规则、标志、包装、运输及贮存。本标准适用于电子汽车衡SCS-10~150t系列衡器的设计、生产 -
多轴测力平台验证的标准实施规程
发布单位:美国-美国材料与试验协会(US-ASTM)
标准状态:现行
标准号:ASTM F3109-23
发布时间:2023-03-01
中标分类:-
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:摘要: 1.1This standard recommends practices for performance verification of multi-axis force platforms commonly used for measuring ground reaction forces during gait, balance, and other activities.1.1.1This standard provides a method to quantify the relationship between applied input force and force platform output signals across the manufacturer’s defined spatial working surface and specified force operating range.1.1.2This standard provides definitions of the critical parameters necessary to quantify the behavior of multi-axis force measuring platforms and the methods to measure the parameters.1.1.3This standard presents methods for the quantification of spatially distributed errors and absolute measuring performance of the force platform at discrete spatial intervals and discrete force levels on the working surface of the platform.1.1.4This standard further defines certain important derived parameters, notably COP (center of pressure) and methods to quantify and report the measuring performance of such derived parameters at spatial intervals and force levels across the working range of the force platform.1.1.5This standard defines the requirements for a report suitable to characterize the force platform’s performance and provide traceable documentation to be distributed by the manufacturer or calibration facility to the users of such platforms.1.1.6Dynamic characteristics and applications where the force platform is incorporated in other equipment, such as instrumented treadmills and stairs, are beyond the scope of this standard.1.1.7This standard is written for purposes of multi-axis force platform verification. However, the methods and procedures are applicable to calibration of force platforms by manufacturers.1.2The values stated in SI units are to be regarded as the standard. Other metric and inch-pound values are regarded as equivalent when required.1.3This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ======5.1Multi-axis force measuring platforms are used to measure the ground reaction forces produced at the interface between a subject's foot or shoe and the supporting ground surface. These platforms are used in various settings ranging from research laboratories to healthcare facilities. The use of force platforms has become particularly important in gait analysis where clinical evaluations have become a billable clinical service.5.2Of particular importance is the application of force platforms in the treatment of cerebral palsy (CP)(1,2).3An estimated 8000 to 10 000 infants born each year will develop CP(3)while today’s affected population is over 764 000 patients(4). Quantitative gait analysis, using force platforms and motion capture systems, provides a valuable tool in evaluating the pathomechanics of children with CP. This type of mechanical evaluation provides a quantitative basis for treating neuromuscular conditions. In other words, surgical decisions are in part guided by information gained from the use of force platform measurements(5,6).5.3Another application is treatment of spina bifida. According to the Gait and Clinical Movement Analysis Society (GCMAS)(7), an instrumented gait analysis is the standard of expert care for children with gait abnormalities secondary to spina bifida. The main objective of diagnostic gait analysis is to define the pathological consequences of neural tube defects as they relate to gait. The use of instrumented gait analysis allows physicians to determine which surgical or non-surgical interventions would provide the best outcome.5.4More recently, force platforms have been used for pre- and post-surgical evaluation of TKA (total knee arthroplasty) and THA (total hip arthroplasty) patients. Such data provides an objective measure of the mechanical outcome of the surgical procedure.5.5In addition to the clinical applications there are numerous medical and human performance research activities which rely on accurate measurement of ground reaction forces by using multi-axis force platform measurement instruments.5.6As a standards organization, ASTM has historically provided excellent standards for the calibration of force transducers and force-measuring instrumentation. Force platforms, however, are different from force transducers. Force platforms typically provide a large active working surface, whereas force transducers provide more or less a single point of interaction with the load-applying environment. Moreover, force platforms typically provide six-axis measurements and are expected to be used in environments causing multi-axial loading. -
14.[标准] 动态公路车辆自动衡器 第6部分:平板模块式发布单位:
中国-国家标准(CN-GB)
标准状态:现行
标准号:GB/T 21296.6-2022
发布时间:2022-12-30
中标分类:N13 仪器、仪表 - 工业自动化仪表与控制装置 - 机械量仪表、自动秤重装置与其他检测仪表
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2023-07-01
摘要: 本文件规定了平板模块式动态公路车辆自动衡器的产品型号、计量要求、技术要求、布局要求、安装条件及维护要求、WIM功能及数据要求、测试方法、检验规则,以及标志、包装、运输和贮存等。
本文件适用于采用安装在称量控制区内,与路面平齐的单个或多个平板模块同时或分别支撑整个被测轴或轴组,以测量行进中公路车辆的轮载荷(若适用)、轴载荷、轴组载荷、整车载荷,进而获得车辆总重量的自动衡器。获取标准 -
15.[标准] 砝码发布单位:
中国-国家标准计划(CN-PLAN)
标准状态:正在起草
标准号:20221081-T-607
发布时间:2022-12-13
中标分类:-
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间: -
16.[标准] 数字指示轨道衡发布单位:
中国-国家标准计划(CN-PLAN)
标准状态:正在起草
标准号:20221085-T-607
发布时间:2022-12-13
中标分类:-
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间: -
17.[标准] 牵引式汽车驻车制动性能检验台发布单位:
中国-团体标准(CN-TUANTI)
标准状态:现行
标准号:T/ZQB 001-2022
发布时间:2022-12-30
中标分类:R17 公路、水路运输 - 公路运输 - 公路车辆维修设备
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2023-03-01
摘要: 主要技术内容:1.范围2.规范性引用文件3.术语和定义4.分类与型号5.技术要求6.试验方法7.检验规则8.标志、包装、运输和储存 -
18.[标准] 地面强度检测仪技术要求发布单位:
中国-团体标准(CN-TUANTI)
标准状态:现行
标准号:T/HBMIF 005-2022
发布时间:2022-12-15
中标分类:CCS
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2022-12-15
摘要: 范围:本文件规定了地面强度检测仪的术语和定义、产品构成及基本参数、技术要求、试验方法、检验规则、标志、包装、运输和贮存。本文件适用于检测地面强度不小于0.6MPa的地面强度检测仪的生产、检验;主要技术内容:本文件规定了地面强度检测仪的术语和定义、产品构成及基本参数、技术要求、试验方法、检验规则、标志、包装、运输和贮存。本文件适用于检测地面强度不小于0.6MPa的地面强度检测仪的生产、检验 -
19.[标准] 검사의 수사개시 범죄 범위에 관한 규정
关于检察官开始调查犯罪范围的规定
发布单位:韩国-韩国技术法规(KR-LEX)
标准状态:现行
标准号:대통령령(제32902호)
发布时间:2022-09-08
中标分类:J98 机械 - 活塞式内燃机与其他动力设备 - 锅炉及其辅助设备
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:2022-09-10
-
在实验室压实特性样品上使用轻型挠度计测量目标模量的标准试验方法
发布单位:美国-美国材料与试验协会(US-ASTM)
标准状态:历史
标准号:ASTM E3331-22
发布时间:2022-07-15
中标分类:-
国标分类:17.100 计量学和测量、物理现象 - 力、重力和压力的测量
实施时间:摘要: 1.1This test method covers the determination of the relationship between moisture content and modulus of unbound granular material using the light weight deflectometer (LWD) on laboratory compaction samples.1.2The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee. ====== Significance And Use ======4.1This test method covers the determination of stiffness or modulus of unbound materials based on acquiring deflection measurements on laboratory compaction samples at varying moisture content. The target values are determined by acquiring LWD measurements on laboratory compaction samples (referred to as proctor tests) of the unbound materials. This method covers determining these target moduli by comparing the compaction moisture density characteristics from standard laboratory compaction measurements in order to optimize the uniformity of compaction and strength condition of the unbound layers.4.2This standard provides a modulus calculation that accounts for the constrained conditions (in the compaction mold) of the test sample. The intent is to be able to compare the results from the molded sample analysis to that of similar material in the field and at a similar stress level.4.3The target modulus or deflections may be either correlated directly to pavement or structure performance or used to determinein situmaterial characteristics of the pavement or structure foundation layers. Some uses of the data include quality control and quality assurance of compacted layers, and for structural evaluation of load carrying capacity. It should be noted that the modulus obtained in this manner on laboratory samples should not be used for design or pavement evaluation.4.4Overall the LWD, and by extension this procedure, is intended to be used as a tool to ensure optimal compaction of unbound materials. Optimizing the soil compaction of infrastructure projects will maximize load capacity and stability of the soil, decrease permeability (which will minimize seepage, erosion, and other unwanted conditions), and prevent or reduce the settlement and differential settlement of supported pavements and structures. The target modulus or deflections are used primarily employed to establish QC/QA criteria for LWD data acquired on similar material at similar stress levels.