首页> 外国专利> Improvements relating to electric circuit arrangements for performing mathematical operations

Improvements relating to electric circuit arrangements for performing mathematical operations

机译:有关执行数学运算的电路布置的改进

摘要

684,989. Electric analogue calculating systems. ASSOCIATED ELECTRICAL INDUSTRIES, Ltd. May 29, 1951 [July 25, 1950], No. 18584/50. Class 37. An electrical calculating-device for solving heat transfer and temperature distribution problems in material under changing conditions as a function of time expressible by the equation where U denotes the temperature, t the time, # the Laplace operator, and k the material diffusivity (=#/sc, where # denotes the heat conductivity, c the specific heat, and s the density), operates by the iterative numerical solution of the equivalent difference equation to which the partial differential equation is reducible in the unidimensional case wherein U depends only on displacement x and time t, and in which #x, #t represent space and time intervals, U 0 , U 1 , U 2 represent temperature at positions x 0 , x 1 , X 2 separated by a space interval #x such that x 1 =x 0 +#x, x 2 =x 0 +2#x, &c., and the superfixed 0 and 1 of the temperature values indicate that they are taken at times t=t 0 - and t=t+#t. Equation (1) may be replaced by similar difference equations in the case of two or three dimensional systems, and the transformation is applicable to the differential equations of other thermal phenomena. The device comprises a resistance network provided with tapping points corresponding to positional points in the material, adjacent tapping points being interconnected by network resistances and connections being also provided between individual tapping- points and adjustable potential sources analogous to temperatures through tapping point resistances, the ratios of which to the network resistances are chosen to represent the thermal properties of the material at the corresponding position point, such that a temperature change of the material is represented by a potential applied suddenly to the corresponding point or points of the network and the resultant temperature distribution after a finite time interval is determined by the potential changes appearing at the tapping points, the process being iteratively repeated to determine the changes in temperature distribution after successive time intervals. Fig. 1 shows a network for the solution of the unidimensional problem of temperature distribution along a bar, exemplified by equation (2), wherein a chain of equal resistors Rx has tapping points X0X1 ... Xn corresponding to successive distances #x from a datum point x and resistances R0, R1 ... Rn having values given by are connected between the tapping points and the sliders of low impedance potentiometers P0, P1 ... Pn connected across the A.C voltage bus-bars U= 1, U=0. A probe Pr connectible to any of the tapping points is joined through a balance indicator M to the slider of a balancing potentiometer B across the busbars. If potentiometers P0, P1 ... Pn are adjusted so that the slider potentials T0, Tl ... Tn represent the temperature distribution at time t 0 , the resultant potentials U0, U1 ... Un at the network tapping points X0, X1 ... Xn represent the temperature distribution at time t 0 +#t, within the accuracy of the difference equation (2) above. Assuming the resistance chain represents, e.g. a bar of uniform thickness at initial temperature U=0, the potentiometers P1 ... Pn are initially zeroized and potentiometer P0 is rapidly adjusted to a voltage from the busbars on point X0 representing by analogy a sudden temperature rise of U 0 = 1 at the left end of the bar, the right end of which remains at zero temperature. Measurement of the potentials at points X0 ... Xn using the probe, balance indicator and potentiometer B gives potentials U 1 SP1/SP ...Uln-i representing the temperature distribution after time t= #t. The potentiometers P1 ... Pn - 1 are now reset to impose corresponding potentials on the several tapping point resistances, and measurement of the new potentials U 1 SP2/SP ... U n SP2/SP at the tapping points indicates the temperature distribution at time 2#t, and the procedure is contained iteratively to indicate the successive temperature distributions at t=3#t, 4#t and finally the required result at t=m#t. The initial temperature distribution analogy potentials may be adjusted to any prescribed series of values and the temperature, analogy potential at x=0 may vary with time. The resistors R0 ... Rn may be variable in accordance with variations in thermal capacity or conductivity, or variations of the time or displacement intervals. If no intermediate values of the temperature distribution are required, duplicate sets of potentiometers P0 to Pn are provided, and are alternately connectible to the computing circuit by ganged change-over switches. The slider potentials corresponding to the initial temperature distribution are derived from the first set, and the slider potentials of the second set are adjusted to balance the various tapping point potentials after the first time interval. The changeover switches are operated to connect the second set in circuit, and the first set is adjusted against the tapping point potentials. The process is repeated for the prescribed number of time intervals after which the temperature distribution analogy potentials are measured as before using the probe indicator and balancing potentiometer. Fig. 2 shows such an arrangement applied to a single tapping point of a two-dimensional network of resistances Rx representing a plane or axially symmetrical heat transfer problem wherein the duplicated potentiometers P, P1 are adjustable by servomotors F, F1 and alternatively connected to the tapping point resistor Ri and the tapping point by ganged automatically driven changeover switches S1, S2 operating at time intervals #t. At the instant shown the slider potential of potentiometer P, corresponding to the tapping point potential at the end of the preceding time interval #t, is connected to the tapping point resistor, while the slider potential of potentiometer P1 is balanced by servomotor F1 against the prevailing tapping point potential. In the succeeding time interval the potentiometers will be interchanged, and the operation is continuous until arrested by the timing device after n operations when the temperature distribution analogy potential is measured, e.g. by an automatic measuring and recording probe scanning the several tapping-points. A single group of servomotors may be arranged to. operate successive groups of potentiometers in turn. The device is adaptable to the solution of the equation representing heat conduction with loss proportional to local temperature, e.g. along an uninsulated bar, by connecting each network tapping point to zero potential through an additional resistance given by where qi represents the local value of the loss constant q, which may vary with temperature or time, Fig. 3 (not shown). RiSP1/SP is adjustable manually or by a servo system after each time interval At, or may have a predetermined non- ohmic current/voltage characteristic, so that the generalized heat equation is soluble. The equation where F is a function of the space co-ordinates, and representing heat conduction with heat generation within the system is similarly soluble by connecting the appropriate tapping points to a voltage source pU 0 through a resistance given by Fig. 4 (not shown), in which Rill may be variable similarly to RiSP1/SP as described above. In a practical construction of a resistance network, Fig. 5 (not shown), parallel spring- tensioned potentiometer wires are stretched between the U=0 and U= 1 bus-bar, and have sliding spring finger tappings located in grooves in an insulated board, the interconnections being effected by jack switches.
机译:684,989。电气模拟计算系统。联合电气工业有限公司1951年1月29日[1950年7月25日],编号18584/50。 37类。一种电子计算设备,用于解决条件随时间变化的条件下材料中的传热和温度分布问题,可由以下公式表示:U表示温度,t表示时间,#拉普拉斯算子,k表示材料扩散率(=#/ sc,其中#表示导热系数,c为比热,s为密度),通过等价差分方程的迭代数值解进行运算,在该情况下,U依赖于一维情况,可以将偏微分方程简化为该方程。仅在位移x和时间t上,并且其中#x,#t表示空间和时间间隔,U 0,U 1,U 2表示在位置x 0,x 1,X 2处的温度,该位置被间隔x隔开x 1 = x 0 +#x,x 2 = x 0 + 2#x,&c。,以及温度值的前缀0和1表示它们是在时间t = t 0-和t = t +#时获取的t。在二维或三维系统的情况下,等式(1)可以由相似的差分方程式代替,并且该变换适用于其他热现象的微分方程式。该装置包括电阻网络,该电阻网络具有与材料中的位置点相对应的分接点,相邻的分接点通过网络电阻互连,并且还在各个分接点和可调节电位源之间提供了与分接点电阻类似的温度连接,比率选择其中的网络电阻来代表材料在相应位置点的热特性,这样,材料的温度变化就由突然施加到网络中一个或多个对应点的电势和所得温度来表示有限时间间隔后的温度分布由出水点处出现的电势变化确定,反复进行此过程以确定连续时间间隔后温度分布的变化。图1示出了用于解决沿条的温度分布的一维问题的网络,以等式(2)为例,其中,相等的电阻器Rx链具有分接点X0X1 ... Xn,该分接点对应于从a到a的连续距离#x。基准点x和具有的给定值的电阻R0,R1 ... Rn连接在分接点和跨交流电压母线连接的低阻抗电位计P0,P1 ... Pn的滑块之间U = 1,U = 0。可连接到任何分接点的探头Pr通过平衡指示器M连接到跨母线的平衡电位计B的滑块。如果调节电位器P0,P1 ... Pn,以使滑块电位T0,T1 ... Tn表示时间t 0处的温度分布,则在网络分接点X0,X1处产生的电位U0,U1 ... Un ... Xn表示时间t 0 +#t处的温度分布,处于上述差分方程(2)的精度之内。假设阻力链代表例如在初始温度U = 0时,如果条形厚度均匀,则将电位计P1 ... Pn初始置零,并迅速将电位计P0调整为来自点X0汇流排的电压,以此类推,类似地,U 0 = 1时温度突然升高条的左端,其右端保持在零温度。使用探针,平衡指示器和电位计B测量X0 ... Xn点处的电势,得出的电势U 1 1 ... Uln-i表示时间t = #t之后的温度分布。现在将电位计P1 ... Pn-1复位,以在几个分接点电阻上施加相应的电势,并测量新电势U 1 2 ... U n 2 指示时间2#t处的温度分布,并且迭代包含该过程以指示t = 3#t,4#t处的连续温度分布,最后指示t = m#t处的所需结果。可以将初始温度分布类比电势调整为任何规定的一系列值,并且x = 0处的温度类比电势可以随时间变化。电阻器R0 ... Rn可以根据热容量或电导率的变化,或时间或位移间隔的变化而变化。如果不需要温度分布的中间值,则提供电位计P0至Pn的重复集,并通过联动转换开关将其交替连接到计算电路。对应于初始温度分布的滑块电势是从第一组中得出的,然后调整第二组的滑块电势以平衡在第一时间间隔后的各种分接点电势。操作转换开关以连接第二组电路,并针对分接点电势调节第一组。在指定的时间间隔内重复该过程,然后像使用探针指示器和平衡电位计之前一样测量温度分布类似电位。图2显示了这样一种装置,该装置适用于代表平面或轴向对称传热问题的二维电阻Rx网络的单个分接点,其中重复的电位计P,P1可通过伺服电机F,F1进行调节,并可选地连接至分接电阻器Ri和分接点由以时间间隔#t运行的成组的自动驱动的转换开关S1,S2组成。在所示的瞬间,电位计P的滑动电位(对应于前一个时间间隔#t结束时的分接点电位)连接到分接点电阻,而电位计P1的滑动电位由伺服电机F1相对于分压点平衡。流行的挖掘点潜力。在随后的时间间隔内,电位器将互换,并且连续进行操作,直到在进行n次操作(如测量温度分布类比电势)后,计时设备将其停止。通过自动测量和记录探针扫描多个分接点。可以布置一组伺服电动机。依次操作各组电位器。该装置适用于代表热传导的方程式的解,其损耗与局部温度成正比,例如与温度成正比。沿着非绝缘棒,通过附加电阻将每个网络分接点连接到零电位,其中qi表示损耗常数q的局部值,该值可能随温度或时间而变化(图3)(未显示)。 Ri 1 可以在每个时间间隔At之后手动调整或通过伺服系统进行调整,或者可以具有预定的非欧姆电流/电压特性,因此广义热方程可解。通过将适当的分接点通过图4给出的电阻连接到电压源pU 0上,方程式中F是空间坐标的函数,并表示系统内热量的传导与热传导的方程类似(未显示) ),其中Rill可以类似于如上所述的Ri 1 进行更改。在实际的电阻网络结构中(图5(未显示)),平行的弹簧张紧电位计线材在U = 0和U = 1母线之间拉伸,并且在绝缘的凹槽中有滑动的弹簧指分接点板,互连由插孔开关实现。

著录项

  • 公开/公告号GB684989A

    专利类型

  • 公开/公告日1952-12-31

    原文格式PDF

  • 申请/专利权人 ASSOCIATED ELECTRICAL INDUSTRIES LIMITED;

    申请/专利号GB19500018584

  • 发明设计人 LIEBMANN GERHARD;

    申请日1950-07-25

  • 分类号G06G7/46;

  • 国家 GB

  • 入库时间 2022-08-24 00:23:30

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号