首页> 外国专利> Magnetic stimulated nucleation of single crystal diamonds

Magnetic stimulated nucleation of single crystal diamonds

机译:单晶钻石的磁激成核

摘要

An apparatus for the crystalline, mass and selective syntheses of diamonds and carbon nanotubes (CNT) includes a chamber having at least one source of carbon and possibly a source of metal on a substrate surface (atoms, clusters and/or nanoparticles); at least one resistance heating element; at least one exciting and heating laser at least one IR source; at least one magnetic field generator; and at least one pressure device. In operation, carbon and metal atoms are supplied to the heated reaction chamber for contacting with substrate supported catalyst, a heating laser beam and an IR source, and then for contacting with an intense magnetic field sufficient amount of interaction between the excited carbon and metal atoms IR, laser, thermal energy and the magnetic field so as to excite, create, catalyze and stabilize electronic spin transitions and high electronic spin states of the excited carbon and metal atoms (for the production of high spin triplett, quartet and pentet carbon atoms) under chemical vapor deposition conditions, leading to the activated and more efficient rehybridization of these high spin carbon atoms for the massive chemical condensation of diamonds and/or CNTs. The specific photons of the laser may stimulate the nucleation of specific helical and diametric CNTs. An even greater massive chemical condensation is driven by selective, periodic and rapidly heating the metal catalyst via the IR-heating source for more efficient localization of energy for electronic, chemical and transport dynamics of high spin carbon atoms through the catalyst for lower ambient temperature selective condensation of CNT. The external magnetic field also provides conditions for creating, stabilizing, reacting and confining these high spin carbon and metal atoms. The continual supply, rehybridization and population inversion of carbon atoms overtime provides conditions conducive the massive and selective diamond and/or CNT productions. By operating the device to physically catalyze and stabilize electronic fixation of high spin states of carbon atoms by intense static arid/or dynamic magnetic fields, the chemical contamination is eliminated or may be modulated for controlled doping during the formation of diamonds and/or CNT, respectively. By operating the device to electronically fix carbon using the catalyst and magnetic fields, the electronic rehybridization rate is enhanced over the rates of currently used older arts of chemical catalytic fixation due to the reinforcing external magnetic field under CVD conditions relative to the intrinsic field of the catalyst and spin interactions with carbon atoms in the absence of the external magnetic field. The external field stabilizes high spin states of carbon and metal atoms, and enhances the intrinsic spin effects of the transition metal for chemical catalytic fixation. Moreover, an intense static external magnetic field stabilizes high spin carbon intermediates leading to stimulated diamond formation. On the other hand an intense dynamic external magnetic field intensified intrinsic spin density waves of the catalyst for enhanced CNT formation. This monumental discovery of magnetically activated rehybridization and stabilization of excited carbon contributes a watershed in the industrial massive production of diamonds and CNT when this magnetic discovery is coupled to new heating methods using IR photons. Furthermore, the stronger magnetic stabilization in this art relative to the weaker inherent fields in the catalyst of the older chemical catalytic art allow lower temperature generation of diamond and CNT. This new art provides diamond-CNT composite materials for novel diamond-CNT interfaces, new doping during the synthesis of diamond. Also in this new art, the magnetic densification of high spin carbon atoms allows more low pressure synthesis of diamond relative to older art. By switching the magnetic field on and off, this new art allows the selection of diamond or carbon nanotube growth.
机译:一种用于金刚石,碳纳米管和晶体的结晶,质量和选择性合成的设备,其包括在腔室表面上具有至少一个碳源以及可能的金属源(原子,团簇和/或纳米颗粒)的腔室;至少一个电阻加热元件;至少一台激发和加热激光器,至少一台红外光源;至少一个磁场发生器;和至少一个压力装置。在操作中,将碳和金属原子供应至加热的反应室,以与负载有底物的催化剂,加热激光束和红外源接触,然后与强磁场接触,使激发的碳和金属原子之间产生足够量的相互作用红外,激光,热能和磁场,以激发,产生,催化和稳定受激碳和金属原子的电子自旋跃迁和高电子自旋态(用于生产高自旋三重态,四重态和五重态碳原子)在化学气相沉积条件下,导致这些高自旋碳原子的活化和更有效地再杂交,从而使金刚石和/或CNT大量化学缩合。激光的特定光子可能会刺激特定的螺旋形和直径CNT的成核。通过红外加热源对金属催化剂进行选择性,周期性和快速加热,从而驱动更大的大规模化学缩合,从而更高效地定位能量,以使高自旋碳原子通过催化剂的电子,化学和传输动力学通过较低的环境温度进行选择CNT的缩合。外部磁场还为产生,稳定,反应和限制这些高自旋碳和金属原子提供了条件。随着时间的推移,碳原子的持续供应,再杂交和种群反转提供了有利于大规模和选择性生产金刚石和/或CNT的条件。通过操作该设备以通过强烈的静态干旱和/或动态磁场物理催化并稳定碳原子的高自旋态的电子固定,可以消除化学污染,也可以在形成金刚石和/或CNT的过程中对化学污染进行调制,以控制掺杂,分别。通过操作该装置以利用催化剂和磁场对碳进行电子固定,由于相对于碳氢化合物的本征场而言,在CVD条件下增强的外部磁场的作用,电子再混合速率比目前使用的较早的化学催化固定技术的速率有所提高。在没有外部磁场的情况下,催化剂和自旋与碳原子的相互作用。外部电场稳定了碳和金属原子的高自旋态,并增强了过渡金属的固有自旋效应,用于化学催化固定。此外,强烈的静态外部磁场使高自旋碳中间体稳定下来,从而刺激了金刚石的形成。另一方面,强烈的动态外部磁场增强了催化剂的固有自旋密度波,从而增强了CNT的形成。当磁性发现与使用红外光子的新加热方法结合在一起时,这种磁活化再混合和激发碳稳定的重大发现为钻石和CNT的工业大规模生产创造了分水岭。此外,相对于较旧的化学催化技术的催化剂中较弱的固有磁场,本技术中的较强的磁稳定性允许较低温度的金刚石和CNT生成。这项新技术为金刚石-CNT的新界面提供了金刚石-CNT复合材料,在金刚石合成过程中也进行了新的掺杂。同样在这种新技术中,相对于较老的技术,高自旋碳原子的磁致密化允许金刚石的低压合成更多。通过打开和关闭磁场,这项新技术可以选择金刚石或碳纳米管的生长。

著录项

  • 公开/公告号US2006018820A1

    专利类型

  • 公开/公告日2006-01-26

    原文格式PDF

  • 申请/专利权人 REGINALD BERNARD LITTLE;

    申请/专利号US20040894500

  • 发明设计人 REGINALD BERNARD LITTLE;

    申请日2004-07-20

  • 分类号C01B31/02;

  • 国家 US

  • 入库时间 2022-08-21 21:44:35

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号