首页> 外国专利> Method of preparing an epitaxial structure, comprises depositing a material by columnar epitaxial growth on a crystalline surface of a substrate, and providing a substrate surface of a periodic projection network on nanometric scale

Method of preparing an epitaxial structure, comprises depositing a material by columnar epitaxial growth on a crystalline surface of a substrate, and providing a substrate surface of a periodic projection network on nanometric scale

机译:制备外延结构的方法,包括通过柱状外延生长在衬底的晶体表面上沉积材料,并提供纳米尺度的周期性投影网络的衬底表面。

摘要

The method of preparing an epitaxial structure, comprises depositing a material by columnar epitaxial growth on a crystalline surface of a substrate, providing a substrate surface of a periodic projection network on a nanometric scale, preparing the substrate surface equipped with the projection network of two elements, and treating the projection network to adjust a height and/or size of a support zone (35) of the projections and/or to modify a mesh parameters of projection material. The material is deposited until- the columns rejoin and the formation of a continuous layer (5). The method of preparing an epitaxial structure, comprises depositing a material by columnar epitaxial growth on a crystalline surface of a substrate, providing a substrate surface of a periodic projection network on a nanometric scale, preparing the substrate surface equipped with the projection network of two elements, and treating the projection network to adjust a height and/or size of a support zone (35) of the projections and/or to modify a mesh parameters of projection material. The material is deposited until- the columns rejoin and the formation of a continuous layer (5). Each projection has the support zone for the column (4). The projection is obtained directly/indirectly from a crystal defects network and/or stress fields created within in a crystalline zone located in a vicinity of an interface, which is joined between two elements. The elements comprise crystalline material and mismatched crystalline lattice arranged in rotation, flexion and/or a discrepancy of lattice parameters at the interface. The crystalline zone is intended for conditioning a period of projection network in which the height of the projections and size of the support zone are adjusted to form a critical thickness (39) higher than the continuous layer obtained at a time of an epitaxy carried out in an absence of projections. The material deposited by the epitaxy has a natural mesh parameter. The period of the network, the height of the projections and size of the support zone are adjusted so that the material deposited by epitaxy find the natural mesh parameter when the columns meet. The two elements are adhered by thinning one of the elements until revealing a relief from surface crystalline defects network and/or stress fields. The relief forms the projection network, which is supported by the other element. The thinning comprises a stage of a mechanical abrasion, a chemical abrasion, correction and sacrificial treatment. The projection network treatment comprises an implantation stage and a contribution of a thermal budget. The thinning and/or projection network treatment comprises a stage of chemical attack, electrochemical attack, mechanical attack, ionic attack, photochemical attack and/or a deposit, under oxidizing/reducing atmosphere. The elements are formed by a same crystalline structure (2), which is taken in two parts. The parts contribute for the formation of the interface by collage. During collage the two parts of the crystalline structure have the crystalline lattice, which is shifted by rotation and/or flexion of a predetermined angle. The crystalline structure comprises a location mark having two parts. The location mark is useful for adjusting a shift angle. An element is a silicon-on-insulator formed by a stacking of a support, a barrier layer by thinning of the support, and a crystalline layer. The collage is carried out by molecular adhesion. A composition of deposited material varies during the deposition by epitaxy. The substrate surface provided with the projection network performs duplication of a master substrate, which is obtained from two stuck elements and by thinning stage. The duplication is carried out by nanoimpression of a mold, which is complementary to the master substrate. The mold is obtained by nanoimpression of the master substrate. An independent claim is included for an epitaxial structure.
机译:该制备外延结构的方法包括:通过柱状外延生长在衬底的晶体表面上沉积材料,提供纳米尺度的周期性投影网络的衬底表面,制备配备有两个元素的投影网络的衬底表面。处理投影网络,以调整投影支撑区域(35)的高度和/或尺寸和/或修改投影材料的网格参数。沉积材料,直到柱重新结合并形成连续层(5)。该制备外延结构的方法包括:通过柱状外延生长在衬底的晶体表面上沉积材料,提供纳米尺度的周期性投影网络的衬底表面,制备配备有两个元素的投影网络的衬底表面。处理投影网络,以调整投影支撑区域(35)的高度和/或尺寸和/或修改投影材料的网格参数。沉积材料,直到柱重新结合并形成连续层(5)。每个突起都有用于柱子(4)的支撑区域。投影是直接/间接地从晶体缺陷网络和/或在位于两个元素之间连接的界面附近的晶体区域内产生的应力场获得的。元素包括晶体材料和错配的晶体晶格,它们在界面处以旋转,弯曲和/或晶格参数差异排列。结晶区用于调节投影网络的一段时间,在该网络中,调整投影的高度和支撑区的大小,以形成比在进行外延生长时获得的连续层高的临界厚度(39)。没有预测。通过外延沉积的材料具有自然的网格参数。调整网络的周期,突起的高度和支撑区域的大小,以便在柱相遇时通过外延沉积的材料找到自然的网格参数。通过减薄其中一个元素来粘附这两个元素,直到露出表面晶体缺陷网络和/或应力场为止。凸版形成投影网络,该投影网络由其他元素支撑。变薄包括机械磨损,化学磨损,校正和牺牲处理的阶段。投影网络处理包括注入阶段和热预算的贡献。稀化和/或投影网络处理包括在氧化/还原气氛下化学侵蚀,电化学侵蚀,机械侵蚀,离子侵蚀,光化学侵蚀和/或沉积的阶段。元素由相同的晶体结构(2)形成,该晶体结构分为两部分。这些部分通过拼贴有助于界面的形成。在拼贴期间,晶体结构的两个部分具有晶体晶格,该晶体晶格通过旋转和/或弯曲预定角度而移动。晶体结构包括具有两个部分的定位标记。位置标记对于调整换档角很有用。元件是通过堆叠支撑物,通过使支撑物变薄的势垒层和结晶层形成的绝缘体上硅。拼贴是通过分子粘附进行的。沉积材料的组成在沉积期间通过外延而变化。设置有投影网络的基板表面执行主基板的复制,该主基板是从两个粘贴的元素并通过减薄阶段获得的。通过与母版基板互补的模具的纳米压印来执行复制。通过母模的纳米压印获得模具。对于外延结构包括独立权利要求。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号