首页> 外国专利> Systems and methods for automated feature selection and pattern discovery of multi-variate time-series

Systems and methods for automated feature selection and pattern discovery of multi-variate time-series

机译:多元时间序列的自动特征选择和模式发现的系统和方法

摘要

Systems and methods of automated feature selection and pattern discovery of multi-variate time-series include obtaining a multi-variate times-series from a network; preprocessing the multi-variate times-series to account for sampling intervals and missing data in the multi-variate times-series; determining a distance matrix for the multi-variate times-series which estimates correlation among features in the multi-variate times-series; performing clustering on the distance matrix; reducing dimensionality of the multi-variate times-series based on the clustering to provide a lower-dimensionality time-series; and providing the lower-dimensionality time-series to one or more applications configured to analyze the multi-variate times-series from the network, wherein the lower-dimensionality time-series provides similar information as the multi-variate time-series with fewer dimensions thereby improving computational complexity of the one or more applications.
机译:多元时间序列的自动特征选择和模式发现的系统和方法包括:从网络获得多元时间序列;以及从网络获得多元时间序列。对多元时间序列进行预处理,以考虑采样间隔和多元时间序列中的缺失数据;确定所述多元时间序列的距离矩阵,所述距离矩阵估计所述多元时间序列中的特征之间的相关性;对距离矩阵进行聚类;基于聚类,降低多元时间序列的维数,以提供较低维的时间序列;并向配置为从网络分析多元时间序列的一个或多个应用程序提供较低维度的时间序列,其中较低维度的时间序列提供的信息与维度较少的多元时间序列的信息相似从而提高了一个或多个应用程序的计算复杂度。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号