首页> 中国专利> 融合D-InSAR和模矢法求取概率积分参数的方法

融合D-InSAR和模矢法求取概率积分参数的方法

摘要

本发明提供一种融合D‑InSAR和模矢法求取概率积分参数的方法,包括:(1)利用概率积分法得到目标像元的预计下沉值、南北方向预计水平移动和东西方向预计水平移动的值,基于三维变形与LOS向变形关系,计算得到目标像元LOS向预计移动变形r'

著录项

  • 公开/公告号CN105806303A

    专利类型发明专利

  • 公开/公告日2016-07-27

    原文格式PDF

  • 申请/专利权人 安徽理工大学;

    申请/专利号CN201610220820.0

  • 发明设计人 王磊;张鲜妮;李楠;吕挑;陈元非;

    申请日2016-04-08

  • 分类号

  • 代理机构北京市盛峰律师事务所;

  • 代理人席小东

  • 地址 232001 安徽省淮南市田家庵区

  • 入库时间 2023-06-19 00:11:02

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-08-21

    授权

    授权

  • 2016-08-24

    实质审查的生效 IPC(主分类):G01B21/32 申请日:20160408

    实质审查的生效

  • 2016-07-27

    公开

    公开

说明书

技术领域

本发明属于矿山变形监测技术领域,具体涉及一种融合D-InSAR和模矢法求 取概率积分参数的方法。

背景技术

开采沉陷预计对建筑物下、铁路下、水体下(简称“三下”)采煤实践具有 重要指导意义。概率积分法是我国“三下”采煤规程指定的开采沉陷预计方法, 因而概率积分参数的求取也是矿山变形监测数据处理的核心内容。常规而言, 开展概率积分参数反演的前提为准确获取采动地表三维变形。D-InSAR(合成孔 径雷达差分干涉测量)由于具有全天时、高精度、似面测量和低费用等特点, 已经成为当前矿山变形监测的研究热点。然而,当前单视向D-InSAR技术主要 用于监测开采沉陷的下沉分量(对下沉敏感),无法提取到地表三维变形(特别 是水平移动),因而,基于单视向D-InSAR技术无法求取全部概率积分参数,特 别是水平移动系数。

解决上述难题,目前采用的主要方法为:建立适用于开采沉陷特点的 D-InSAR三维变形监测方法,然后直接进行求参。现有技术出现的解决方案主 要有:多视向D-InSAR、D-InSAR+Offsettracking、D-InSAR+MAI、融合GPS 和D-InSAR法、地表先验模型+D-InSAR等方法,但上述方法主要用于解决地 震、滑坡、火山喷发、冰川移动等特点的移动变形问题,然而上述对象的移动 机理不同于矿山开采沉陷,并不能妥善解决矿山开采地表的三维变形监测问题。 所以利用常规方法无法求取全部概率积分参数。

可见,如何基于单视向D-InSAR技术,求取全部概率积分参数,特别是水平 移动系数,从而实现开采沉陷预计,具有重要意义。现有技术中尚未出现有效 的解决方案。

发明内容

针对现有技术存在的缺陷,本发明提供一种融合D-InSAR和模矢法求取概率 积分参数的方法,可有效解决上述问题。

本发明采用的技术方案如下:

本发明提供一种融合D-InSAR和模矢法求取概率积分参数的方法,包括以下 步骤:

步骤1,根据地质采矿条件,预设工作面开采沉陷预计概率积分参数初值;

步骤2,通过雷达D-InSAR技术获取采动地表变形场影像;从所述采动地表 变形场影像中选取n个目标像元;对于每个所述目标像元,均执行步骤2.1-步骤 2.3:

步骤2.1,获取任意形状工作面地质采矿条件参数,并对工作面形状进行剖 分,同时获取每个剖分单元的参数;另外,提取目标像元中心地理坐标(x,y); 以步骤1的工作面开采沉陷预计概率积分参数初值、剖分单元的参数、目标像元 中心地理坐标(x,y)为概率积分法模型的输入,利用所述概率积分法模型预计 得到目标像元的预计下沉值Wi、南北方向预计水平移动UiSN和东西方向预计水平 移动UiEW的值;

步骤2.2,将步骤2.1计算得到的目标像元预计下沉值Wi、南北方向预计水平 移动UiSN和东西方向预计水平移动UiEW的值,以及获取到的雷达卫星的入射角θi的值和卫星飞行方向方位角αi的值,代入公式(1),得到目标像元LOS向预计移 动变形r'iLOS的值;

riLOS=-UiSNsinθicos(αi-32π)-UiEWsinθisin(αi-32π)+Wicosθi---(1)

步骤2.3,利用D-InSAR技术提取目标像元的LOS向实测移动变形riLOS的值, 采用公式(2)计算得到目标像元的LOS向变形预计残差vi的值;

vi=riLOS-r'iLOS(2)

由此分别计算得到n个目标像元的LOS向变形预计残差vi的值;

步骤3,构筑求参误差函数ε(B):

ϵ(B)=Σi=1n|vi|---(3)

其中,B为全部概率积分参数组成的矩阵;

将所计算得到的n个目标像元的LOS向变形预计残差vi的值代入公式(3), 计算得到误差函数值;基于ε(B)=min准则,利用模矢法搜索,获取全局最优概 率积分预计参数。

优选的,步骤1中,所预设的工作面开采沉陷预计概率积分参数初值包括左 拐点偏移距S1、右拐点偏移距S2、上拐点偏移距S3、下拐点偏移距S4、下沉系数 q、主要影响角正切tanβ、最大下沉角θ和水平移动系数b。

优选的,步骤2.1中,对工作面形状进行剖分,同时获取每个剖分单元的参 数,具体为:首先获取工作面采深H,然后以边长为H/10的正方形为剖分单元, 沿走向和倾向对工作面进行剖分,设任意一个剖分单元为剖分单元j,获取剖分 单元j如下的剖分参数:单元面积Aj、单元中心采深Hj和单元中心坐标(xj,yj);

所述获取任意形状工作面地质采矿条件参数包括:工作面尺寸D1和D3、采 深H、采高m和煤层倾角α。

优选的,步骤2.1中,所述概率积分法模型为:

Wi=[∑Wj(x,y)·Aj]·W0(4)

UiSN=[rj·(-2π/rj2)·(x-xj)·Wj(x,y)·Aj]·b·W0(5)

UiEW=[rj·(-2π/rj2)·(y-yj+lj)·Wj(x,y)·Aj+Wj(x,y)·Aj·ctgθ]·b·W0---(6)

其中:Wj(x,y)=(1/rj2)·exp(-π·(x-xj)2/rj2)·exp(-π·(y-yj+lj)2/rj2)、 lj=Hjcotθ、rj=Hj/tanβ、W0=mqcosα。

优选的,步骤3中,基于ε(B)=min准则,利用模矢法搜索,获取全局最优 概率积分预计参数具体为:

步骤3.1,令B1=B,并以B1作为初始基点进行搜索;

其中:

B1=(S10,S20,S30,S40,q0,tanβ0,θ0,b0)T=(X10,X20,X30,X40,X50,X60,X70,X80)T---(7)

B1所包含的各个预计参数即为B1的分量,值为步骤1所设置的值;

步骤3.2,确定B1的各个分量的探索步长;

即:对于任意分量Xi0(i=1,2,...,8),其步长为Δi,表示为:

Δi=(0,…,ΔXi0,…,0)T(8)

步骤3.3,根据步骤1-步骤3,计算初始基点B1的误差函数值ε(B1),另外计算 B11的误差函数值ε(B11);

比较ε(B1)和ε(B11):

若ε(B11)<ε(B1),则探测成功,以点B11作为临时矢点,并记作T11,T11的第一个下标1表示建立第一个模矢,第二个下标1表示X1已被摄动;

若ε(B11)>ε(B1),则本次探测失败,进行反方向探测,即:试验B11点, 若ε(B11)<ε(B1),则本次探测成功,以点B11作为临时矢点,并记作T11;否 则,仍以B1作为临时矢点,并记作T11;上述搜索可用公式(9)进行描述,

步骤3.4,当B1的第1个分量X1被摄动时,则用T11代替原来的基点B1,继 续对B1的第2个分量X2,进行摄动,得临时矢点T12;依此类推,直到对B1的 第8个分量X8进行摄动,得到临时矢点T18

步骤3.5,在得到临时矢点T18后,令T18=B2,由初始基点B1和新基点B2构成 第一个模矢;

步骤3.6,将第一个模矢延长一倍,得到第二个模矢的初始临时矢点T20,即:

T20=B1+2(B2-B1)=2B2-B1(10)

步骤3.7,同样,在T20附近进行探索,依次得到临时矢点T21,T22,Λ,T28,并以 T28为第三个基点B3,此时由B2、B3构成第二个模矢;

将第二个模矢延长一倍,得到第三个模矢的初始临时矢点T30,即:

T30=B2+2(B3-B2)=2B3-B2(11)

步骤3.8,如此不断循环,若对于第i个模矢存在以下关系:

ε(Ti0)<ε(Bi)(12)

则由Ti0产生不出比Bi更好的点,则应退回到Bi,模矢不再延长,并在Bi附 近进行搜索;如果能得出新的下降点,即可引出新的模矢;否则,将步长缩小 一半,开展更精细的探查,当步长缩小到足够高的精度时,即可停止迭代,此 时得到的概率积分参数为全局最优解。

本发明提供的融合D-InSAR和模矢法求取概率积分参数的方法具有以下优 点:

本发明有效融合了D-InSAR和模矢法,可求取全部概率积分参数,并且,还 具有求取概率积分参数精度高的优点。

附图说明

图1为本发明提供的融合D-InSAR和模矢法求取概率积分参数的方法的流程 示意图;

图2为本发明提供的时段2011.12.25-2012.03.11LOS方向累计地表移动变形 量示意图;

图3为本发明提供的求参拟合效果图。

具体实施方式

为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以 下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述 的具体实施例仅用以解释本发明,并不用于限定本发明。

发明人研究发现,基于单视向D-InSAR技术虽然无法直接监测开采沉陷三 维移动变形,但LOS向移动变形本质为目标点的下沉分量、水平移动分量沿LOS 向投影,理论上可根据这种关系模型,结合目标区域地质采矿条件,利用非线 性规划理论反演概率积分参数。

鉴于此,发明人开展重点研究,本发明人结合采动变形规律和雷达几何成 像特点,采用模矢法构建基于单视向D-InSAR的开采沉陷概率积分参数反演模 型,可基于单视向D-InSAR技术反演全部概率积分参数,并且,反演得到的概率 积分参数的准确度较高,研究成果对D-InSAR矿山变形监测具有重要参考价值。

具体的,结合图1,本发明提供的融合D-InSAR和模矢法求取概率积分参数 的方法,包括以下步骤:

步骤1,根据地质采矿条件,预设工作面开采沉陷预计概率积分参数初值;

本步骤中,所预设的工作面开采沉陷预计概率积分参数初值包括左拐点偏 移距S1、右拐点偏移距S2、上拐点偏移距S3、下拐点偏移距S4、下沉系数q、主 要影响角正切tanβ、最大下沉角θ和水平移动系数b。

步骤2,通过雷达D-InSAR技术获取采动地表变形场影像;从所述采动地表 变形场影像中选取n个目标像元;对于每个所述目标像元,均执行步骤2.1-步骤 2.3:

步骤2.1,获取任意形状工作面地质采矿条件参数,包括:工作面尺寸D1和 D3、采深H、采高m和煤层倾角α。

对工作面形状进行剖分,同时获取每个剖分单元的参数;此处具体为:首 先获取工作面采深H,然后以边长为H/10的正方形为剖分单元,沿走向和倾向对 工作面进行剖分,设任意一个剖分单元为剖分单元j,获取剖分单元j如下的剖分 参数:单元面积Aj、单元中心采深Hj和单元中心坐标(xj,yj);

另外,提取目标像元中心地理坐标(x,y);

以步骤1的工作面开采沉陷预计概率积分参数初值、剖分单元的参数、目标 像元中心地理坐标(x,y)为概率积分法模型的输入,利用所述概率积分法模型 预计得到目标像元的预计下沉值Wi、南北方向预计水平移动UiSN和东西方向预计 水平移动UiEW的值;

本步骤中,所建立的概率积分法模型为:

Wi=[ΣWj(x,y)·Aj]·W0(4)

UiSN=[rj·(-2π/rj2)·(x-xj)·Wj(x,y)·Aj]·b·W0(5)

UiEW=[rj·(-2π/rj2)·(y-yj+lj)·Wj(x,y)·Aj+Wj(x,y)·Aj·ctgθ]·b·W0---(6)

其中:Wj(x,y)=(1/rj2)·exp(-π·(x-xj)2/rj2)·exp(-π·(y-yj+lj)2/rj2)、 lj=Hjcotθ、rj=Hj/tanβ、W0=mqcosα。

步骤2.2,将步骤2.1计算得到的目标像元预计下沉值Wi、南北方向预计水平 移动UiSN和东西方向预计水平移动UiEW的值,以及获取到的雷达卫星的入射角θi的值和卫星飞行方向方位角αi的值,代入公式(1),得到目标像元LOS向预计移 动变形r'iLOS的值;

riLOS=-UiSNsinθicos(αi-32π)-UiEWsinθisin(αi-32π)+Wicosθi---(1)

步骤2.3,利用D-InSAR技术提取目标像元的LOS向实测移动变形riLOS的值, 采用公式(2)计算得到目标像元的LOS向变形预计残差vi的值;

vi=riLOS-r'iLOS(2)

由此分别计算得到n个目标像元的LOS向变形预计残差vi的值;

步骤3,构筑求参误差函数ε(B):

ϵ(B)=Σi=1n|vi|---(3)

其中,B为全部概率积分参数组成的矩阵;

将所计算得到的n个目标像元的LOS向变形预计残差vi的值代入公式(3), 计算得到误差函数值;基于ε(B)=min准则,利用模矢法搜索,获取全局最优概 率积分预计参数。

本步骤中,基于ε(B)=min准则,利用模矢法搜索,获取全局最优概率积分 预计参数具体为:

步骤3.1,令B1=B,并以B1作为初始基点进行搜索;

其中:

B1=(S10,S20,S30,S40,q0,tanβ0,θ0,b0)T=(X10,X20,X30,X40,X50,X60,X70,X80)T---(7)

B1所包含的各个预计参数即为B1的分量,值为步骤1所设置的值;

步骤3.2,确定B1的各个分量的探索步长;

即:对于任意分量Xi0(i=1,2,...,8),其步长为Δi,表示为:

Δi=(0,…,ΔXi0,…,0)T(8)

步骤3.3,根据步骤1-步骤3,计算初始基点B1的误差函数值ε(B1),另外计算 B11的误差函数值ε(B11);

比较ε(B1)和ε(B11):

若ε(B11)<ε(B1),则探测成功,以点B11作为临时矢点,并记作T11,T11的第一个下标1表示建立第一个模矢,第二个下标1表示X1已被摄动;

若ε(B11)>ε(B1),则本次探测失败,进行反方向探测,即:试验B11点, 若ε(B11)<ε(B1),则本次探测成功,以点B11作为临时矢点,并记作T11;否 则,仍以B1作为临时矢点,并记作T11;上述搜索可用公式(9)进行描述,

步骤3.4,当B1的第1个分量X1被摄动时,则用T11代替原来的基点B1,继 续对B1的第2个分量X2,进行摄动,得临时矢点T12;依此类推,直到对B1的 第8个分量X8进行摄动,得到临时矢点T18

步骤3.5,在得到临时矢点T18后,令T18=B2,由初始基点B1和新基点B2构成 第一个模矢;

步骤3.6,将第一个模矢延长一倍,得到第二个模矢的初始临时矢点T20,即:

T20=B1+2(B2-B1)=2B2-B1(10)

步骤3.7,同样,在T20附近进行探索,依次得到临时矢点T21,T22,Λ,T28,并以 T28为第三个基点B3,此时由B2、B3构成第二个模矢;

将第二个模矢延长一倍,得到第三个模矢的初始临时矢点T30,即:

T30=B2+2(B3-B2)=2B3-B2(11)

步骤3.8,如此不断循环,若对于第i个模矢存在以下关系:

ε(Ti0)<ε(Bi)(12)

则由Ti0产生不出比Bi更好的点,则应退回到Bi,模矢不再延长,并在Bi附 近进行搜索;如果能得出新的下降点,即可引出新的模矢;否则,将步长缩小 一半,开展更精细的探查,当步长缩小到足够高的精度时,即可停止迭代,此 时得到的概率积分参数为全局最优解。

由此可见,本发明克服了单视向D-InSAR技术由于不能准确获取采动地表水 平移动,导致无法求取与水平移动相关的水平移动参数的难题,本发明利用LOS 向移动本质为目标点的下沉分量、水平移动分量沿LOS向投影之和的关系,基于 模矢法提出了一种融合D-InSAR和模矢法求取概率积分参数的方法,可基于单视 向D-InSAR技术反演全部概率积分参数,并且,反演得到的概率积分参数的精确 度较高。

利用本发明提出的融合D-InSAR和模矢法求取概率积分参数的方法,对兖州 南屯煤矿9310工作面的开采沉陷规律积分参数求取进行了应用实验。图2为获取 的2011.12.25-2012.03.11时段LOS方向累计地表移动变形量,根据本发明方法求 取2012.3.11日的工作面开采沉陷的动态概率积分参数为:q=0.170、b=0.12、 tanβ=2.12、θ=88°、S1=-11、S2=10、S3=-90、S4=33,拟合误差约在-40~40mm之 间,拟合中误差m=±14.67mm,拟合效果图如图3所示。由此证明了本发明求取 的概率积分参数的精确度高的优点。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰, 这些改进和润饰也应视本发明的保护范围。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号