公开/公告号CN104704651A
专利类型发明专利
公开/公告日2015-06-10
原文格式PDF
申请/专利权人 弗劳恩霍弗应用技术研究院;德累斯顿工业大学;
申请/专利号CN201380047864.2
申请日2013-09-13
分类号
代理机构北京柏杉松知识产权代理事务所(普通合伙);
代理人全万志
地址 德国慕尼黑
入库时间 2023-12-18 09:28:35
法律状态公告日
法律状态信息
法律状态
2020-08-28
未缴年费专利权终止 IPC(主分类):H01M4/04 授权公告日:20171010 终止日期:20190913 申请日:20130913
专利权的终止
2017-10-10
授权
授权
2016-05-18
著录事项变更 IPC(主分类):H01M4/04 变更前: 变更后: 申请日:20130913
著录事项变更
2015-07-08
实质审查的生效 IPC(主分类):H01M4/04 申请日:20130913
实质审查的生效
2015-06-10
公开
公开
提供了一种相对于现有技术的Li-S电池而言具有提高的循环稳定性并且同时具有接近完美的放电效率的Li-S电池。
在先前的Li-S电池实施方案中,一般使用锂金属负极。锂金属负极导致高电容量并且可容易地制造,然而一些缺点与其相关。锂金属是反应性的,在电池的制造中和使用中,它会导致安全问题(所谓的对于金属锂从181℃熔点的“热失控”)。此外,锂金属在循环期间容易出现枝晶生长,因此,结果是表面积大幅增大和反应性增加。
另外,由于生长的枝晶,在单电池中可产生短路,这导致单电池破坏并还导致另外的安全问题。最后,当使用金属锂时,尤其由于锂的枝晶生长,循环稳定性一般限于100至至多200个循环。
为了解决这个问题,目前在锂电池中已经使用石墨负极。因此,稳定性和安全性由此可以显著提高,然而却以电池的低电容量为代价。对于硫电池,存在以下问题:由于各种原因石墨负极是不可行的。作为这样的例子,可以提及硫电解质的溶剂的嵌入,这导致石墨负极的破坏。
最初的方法显示用具有非常高电容量的合金负极(Si,Sn)来替换锂负极的可能性。这些合金负极实际上基本解决与锂枝晶相关的问题,但目前还不是特别的循环稳定。由锂化引起的Si(和Sn)的高膨胀在此是有问题的。例如,Si的膨胀为320%,Sn的膨胀为260%(Zhang,W.-J.,Journal of Power Sources,196:13–24,2011)。
良好的Si和Sn负极的制造(尤其是对于锂铁单电池)是当前研究的主题。与在Li-S单电池中的Si和Sn相关的报道显示这些合金负极在原理上的适用性,但证实了这些系统的循环不稳定性。循环不稳定性的原因一般是对负极和正极侧的劣化影响。
负极或正极的锂化均存在困难。因此,如果铜被用作载体基材而电流导体用于负极材料(例如硅薄膜),则仅能够实现很低的部分锂化和因此的低电容量(Elazari,R.等人,Electrochemistry Communications,14:21–24,2012)。对于由硅纳米线制成的负极,同样地仅可以实现很低的电容量(Yang,Y.等人,Nano Letters,10:1486–1491,2010)。
此外,当使用由碳硫复合材料制成的正极和由碳硅复合材料制成的锂化负极时,可以实现约300mAh/g的高电容量但仅可以获得低的稳定性。
还已知使用基于其中特别地使用锂复合涂层的锂金属负极的Li-S单电池(US 7358012 B2)。
由此出发,本发明的目的是提供既具有高电容量又具有高循环稳定性的Li-S电池,提供用于操作根据本发明的Li-S电池的方法,和提供根据本发明的Li-S电池的用途。
该目的通过根据权利要求1所述的Li-S电池和根据权利要求8所述的用于操作根据本发明的Li-S电池的方法来实现。从属权利要求揭示有利的发展方案。
因此提供Li-S电池,其包括:
a)正极,其包括导电碳材料、包含硫或由硫组成的电化学活性正极材料、和/或至少部分纤维状的塑料;
b)负极,其包括至少区域性涂覆有硅和/或锡的导电基材;
c)布置在正极和负极之间的含有锂的液体电解质、凝胶电解质和/或固体电解质。
出人意料地,确定了根据本发明的电池具有几乎完美的放电效率,其甚至在超过1000次的充电/放电循环时还保持在最大可能的值几乎未改变。
Li-S电池的其他主要优点是其具有简单的构造和相对低的重量。此外,该电池与现有技术的Li-S电池相比具有更高的表面电容量和更高的质量电容量。可以实现≥1050mAh/g和甚至≥1500mAh/g的电容量值和>4mAh/cm2的表面电容量。
此外,该电池具有高的长期稳定性,因为Li-S电池的正极包含纤维状塑料和/或多孔碳并因此对抗高机械力作用。硫和含硫类物质的这种基体结构具有用于吸附多硫化物以及沉积/接触S和/或Li2S的薄层的大的内表面和大的孔体积。因此,活性材料的体积膨胀可以由自由孔体积来补偿。
总之,根据本发明的Li-S电池具有相对于现有技术而言提高的倍率行为以及提高的稳定性。
如可以被包含在根据本发明的Li-S电池中的正极例如是从DE 10 2012 203019.0中得知的。关于正极的可能的实施方案以及可能的制造方法,参考本专利申请,其公开内容在这方面也构成本申请的目的。
在本发明的一个优选实施方案中,电池的特征在于,相对于正极的总重量,正极包含
a)40重量%至90重量%、优选50重量%至80重量%、特别优选60重量%至75重量%的电化学活性正极材料;
b)1重量%至55重量%、优选5重量%至35重量%、特别优选10重量%至25重量%的导电碳材料;和/或
c)2重量%至50重量%、优选3重量%至20重量%、特别优选5重量%至10重量%的塑料。
根据本发明的电池的正极可以另外包括
a)包含硫或锂硫化合物、优选Li2S的电化学活性正极材料;
b)作为导电碳材料的多孔碳、碳黑、石墨烯、石墨、类金刚石碳(DLC)、类石墨碳(GLC)、碳纤维、碳纳米管和/或碳空心球,和/或
c)作为部分纤维状的塑料的部分纤维状的聚四氟乙烯。
在一个优选实施方案中,
a)碳纳米管具有0.1nm至100nm、优选1nm至50nm、特别优选5nm至25nm的直径;和/或
b)碳纤维具有1μm至100μm、优选5μm至50μm、特别优选10μm至20μm的直径。
正极可以配置为优选具有20μm至1000μm的厚度、特别优选具有50μm至500μm的厚度、特别是具有80μm至300μm的厚度的膜。任选地,将正极施用在导电基材上、优选施用在金属和/或碳材料上,但也可以在根据本发明的Li-S电池中分开地使用,即不用施用在基材上。
优选地,将电化学活性正极材料至少区域性施用在导电碳材料的表面上,或者将导电碳材料施用在活性正极材料的表面上。
在根据本发明的Li-S电池的另一个优选实施方案中,负极的涂层是共形涂层、特别是PVD-和/或CVD涂层、特别优选PE-CVD涂层。利用PE-CVD的涂层具有的优点是产生相对于磁控涂层而言更均匀的涂层。
负极的导电基材可以以纤维状形式、优选以三维纤维网状的形式、特别优选以纤维、纳米纤维或纳米管或前述类型纤维的随机取向的纤维织物和/或绒头织物的形式存在。
当负极以纤维状形式存在时,在涂层的制造中观察到与磁控涂层相比提高的渗透。尤其对于经由PE-CVD的涂层的这种施用,在此能够实现在纤维状负极的整个深度上均匀的涂层或纤维状、三维网状的均匀涂层。
在这方面,纤维和/或形成随机取向的纤维织物或绒头织物的基础的负极的纤维或纳米纤维或纳米管可以具有1nm至500μm、优选10nm至200μm、进一步优选100nm至100μm、进一步优选1μm至100μm、进一步优选5μm至50μm、特别优选10μm至20μm的直径。
负极的涂层的厚度可以在0.1μm至50μm、优选0.5μm至20μm、特别优选0.5μm至2μm的范围中。负极的纤维状导电基材可以包含选自碳、石墨、石墨烯、类金刚石碳(DLC)、碳黑和碳纳米管的材料或由其组成。
优选地,相对于负极的总质量,负极包含0.1重量%至90重量%、优选20重量%至80重量%、特别优选40重量至70重量%总量的硅和/或锡。
在一个进一步优选的实施方案中,负极是锂化的。这已经可以通过将锂金属箔压到负极(例如Si负极)上并通过进行约4至12小时的工作时间的锂化来进行。
负极可以具有10μm至1000μm、优选20μm至500μm、特别优选50μm至120μm的厚度。
优选地,根据本发明的电池的电解质选自至少一种锂盐在至少一种环醚或非环醚中的溶液或悬浮液、特别优选
a)双(三氟甲烷磺基)酰亚胺锂(LiTFSI),
b)三氟甲烷磺酸锂;和/或
c)硝酸锂;
在
i)乙二醇二甲醚(DME)
ii)四乙二醇二甲醚(TEGDME,IUPAC:2,5,8,11,14-五氧十五烷);和/或
iii)1,3-二氧戊烷(DOL)中的溶液或悬浮液。
发现包含电解质的根据本发明的电池,所述电解质包含硝酸锂,其相对于在电解质中不包含硝酸锂的电池具有更加恒定的充电效率。
此外,优选的是在正极和负极之间布置至少一个隔离物,该隔离物特别优选地包含由热塑性材料、特别是PE、PP和/或PET制成的、或者由其组成的可渗透膜。
在根据本发明的电池的进一步优选实施方案中,负极和正极关于其电容量和/或其可能的充/放电倍率是彼此协调的。
特别优选地,负极关于其每电极表面的电容量相对于正极而言明显要大,即负极设计为与正极相比其电容量更大。在长循环时间的情况下,这是特别有利的,因为由此使得负极的温和操作模式成为可能。因此,这改善了整个单电池的总体性能。在应用实例中,负极的电容量(在半单电池中测量)比正极的电容量(同样在半单电池中测量)高75%。因此,负极在充/放电期间不是满载的,且体积变化和应力减小。
此外,提供用于操作根据前述权利要求之一的电池的方法,所述方法的特征在于电池
a)最大以1.3V至1.7V、优选1.4V至1.6V、特别是1.45V至1.55V的剩余端电压放电;和/或
b)最高以2.4V至2.8V、优选2.5V至2.7V、特别是2.55V至2.65V的最大端电压充电。
根据本发明的电池可以在使用期间以至少150mA/g至170mA/g硫的高放电倍率和/或充电倍率操作。例如已经达到最高836mA/g硫的放电倍率。
根据本发明的主题是旨在参照之后的附图和实施例更详细地说明本发明,而不希望将所述主题限制于在此举例说明的具体实施方案。
图1在此示出与现有技术的电池相比,以实施例的方式给出的根据本发明的Li-S电池每克正极和每克硫的放电容量,图2还示出电解质中硝酸锂对以实施例的方式给出的根据本发明的Li-S电池之一的充电效率的影响。
图1描述来自实施例1的根据本发明的Li-S电池的充电效率和放电容量。所测量的充电效率和放电容量是根据放电循环次数的函数表示的。变得清楚的是充电效率在1400次循环期间保持在1000mAh/g几乎恒定(因此至多100%CE),而在现有技术的电池的情况下,在循环的过程中可以观察到充电效率的明显下降。根据本发明的电池的电容量实际上在1400次充电循环期间连续地减少,但相对于现有技术而言减少至小程度。在1400次循环后,电容量相对于硫的质量仍为380mAh/g。根据现有技术,Li-S电池一般在约200次循环后急剧地失去电容量(尤其因为负极侧上的劣化/枝晶)。
图2描述了根据本发明的Li-S电池的库伦效率,所述电池在电解质中包含硝酸锂或在电解质中不包含硝酸锂。变得清楚的是电解质中的硝酸锂引起使电池充电效率稳定的效果,使得充电效率可以在多个充电和放电循环保持恒定。
实施例1
负极:
SGL公司碳SE(商品名GDL 10AA)的纤维状碳负极0.74mg,其包含Si作为磁控溅射涂层(涂层厚度:4μm)
负极直径:10mm
与电流导体的总质量:7.5mg
正极:
正极包含
-53.3重量%的硫(=1.3mg)
-26.7重量%的碳空心球
-10重量%的聚四氟乙烯(PTFE)
-10重量%的碳纳米管(CNT)
正极直径:10mm
电解质:
36μl的含1M LiTFSI、0.25M LiNO3的DME:DOL(1:1体积)
其他组分:
CR2016Coincell(尺寸(形状因素)为2016(直径20mm,高度1.6mm)的圆形单电池)。
电池的放电/充电
首先以167mA/g硫的放电/充电电流的三个循环,然后用836mA/g硫的放电/充电电流。
实施例2
负极:
SGL公司GDL 10AA纤维状碳负极0.74mg,其包含Si作为磁控溅射涂层(涂层厚度:4μm)
负极直径:10mm
与电流导体的总质量:7.5mg
正极:
正极包含
-53.3重量%的硫(=1.1mg)
-26.7重量%的碳空心球
-10重量%的聚四氟乙烯(PTFE)
-10重量%的碳纳米管(CNT)
正极直径:10mm
电解质:
40μl的含1M LiTFSI、0.25M LiNO3的DME:DOL(1:1体积)
其他组分:
CR2016Coincell
电池的放电/充电
充电/放电电流167mA/g硫
实施例3(不含LiNO3)
负极:
SGL公司GDL 10AA纤维状碳负极0.74mg,其包含Si作为磁控溅射涂层(涂层厚度:4μm)
负极直径:10mm
与电流导体的总质量:7.5mg
正极:
正极包含
-53.3重量%的硫(=1.9mg)
-26.7重量%的碳空心球
-10重量%的聚四氟乙烯(PTFE)
-10重量%的碳纳米管(CNT)
正极直径:10mm
电解质
45μl的含1M LiTFSI的DME:DOL(1:1体积)
其他组分:
CR2016Coincell
2500
电池的放电/充电
用84mA/g硫的放电/充电电流的三个循环,其后用418mA/g硫的放电/充电电流。
机译: -具有高循环稳定性的Li-S电池及其操作方法
机译: 具有高循环稳定性的锂硫(Li-S)电池及其操作方法
机译: 具有高循环稳定性的Li-S电池及其操作方法