首页> 中国专利> 机床的热变位量修正方法及热变位量修正装置

机床的热变位量修正方法及热变位量修正装置

摘要

将滚珠丝杠轴的前侧轴部和螺母部移动范围按照80mm间隔分割成五个运算区间,并将后侧轴部设为一个运算区间。根据工作台的送料速度和送料数据,每50ms对在六个运算区间内产生的发热量进行运算。根据使运算出的发热量累积6400ms得到的发热量Q

著录项

  • 公开/公告号CN102481675A

    专利类型发明专利

  • 公开/公告日2012-05-30

    原文格式PDF

  • 申请/专利权人 兄弟工业株式会社;

    申请/专利号CN201080037054.5

  • 发明设计人 小林治夫;仓桥初;

    申请日2010-08-25

  • 分类号B23Q15/18;G05B19/404;

  • 代理机构上海专利商标事务所有限公司;

  • 代理人马淑香

  • 地址 日本爱知县

  • 入库时间 2023-12-18 05:30:07

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2014-05-21

    授权

    授权

  • 2012-07-11

    实质审查的生效 IPC(主分类):B23Q15/18 申请日:20100825

    实质审查的生效

  • 2012-05-30

    公开

    公开

说明书

技术领域

本发明涉及机床的热变位量修正方法及热变位量修正装置。更详细而言, 涉及对因在机床工作中产生的滚珠丝杠机构的热变位而引起的误差进行修 正的方法及装置。

背景技术

滚珠丝杠机构作为机床的定位机构而广泛使用。在滚珠丝杠机构中, 因制造公差等会在滚珠丝杠轴的旋转量与螺母的移动量之间产生节距误 差。机床的热变位量修正装置根据预先设定的节距误差修正量的图表,对 滚珠丝杠机构的节距误差进行修正。

滚珠丝杠机构因滚珠丝杠轴与螺母的摩擦阻力及滚珠丝杠轴与各轴承 部的摩擦阻力的发热而温度上升。滚珠丝杠机构因上述温度上升而引起热 膨胀,从而产生热变位(伸长)。滚珠丝杠轴的热变位成为机床的定位误差。 作为上述问题的解决方案,有预张力方式。预张力方式对滚珠丝杠轴施加 预张力,来吸收热膨胀。

机床使用较粗的滚珠丝杠轴,且送料速度变得非常快。因此,发热量 增加,所以在使用预张力方式的情况下,机床必须对滚珠丝杠轴施加非常 大的张力。在机床施加非常大的张力的情况下,存在滚珠丝杠机构变形的 问题。在上述情况下,在推力轴承上施加有过度的力,存在滚珠丝杠机构 烧结的问题。

根据在专利文献1至3中提出的滚珠丝杠轴的热变位量修正方法,不 会对滚珠丝杠轴施加过度的张力,且无需特别的测定装置。该方法在机床 工作中对热变位进行修正。具体而言,第一工序根据伺服马达的转速,对 滚珠丝杠轴的各区间的发热量进行运算。第二工序使用将滚珠丝杠轴中的 螺母移动范围分割成多个修正区间的模型,根据发热量对滚珠丝杠轴的温 度分布进行运算。第三工序根据温度分布,时时刻刻预测滚珠丝杠轴的热 变位量。第四工序将热变位量作为修正节距误差修正量的修正量输入数控 装置(控制部)。该方法能使运算出的修正量与滚珠丝杠轴的实际伸长量近 似。

如图8所示,例如,滚珠丝杠机构的修正区间是按照20mm的长度将滚 珠丝杠轴81的螺母部移动范围(机床坐标中X0至X300之间)81b等分而成 的区间。在每个修正区间都进行节距误差修正。在每个按与节距误差修正 的修正区间相同的设定长度分割而成的运算区间中,对热变位量的修正量 进行运算。当运算区间较短时,该运算区间数增加。因此,热变位量修正 装置的运算处理的负荷增大,有时无法在预先设定的时间(运算周期)内运 算出热变位量的修正量。由于上述长度20mm作为运算区间的长度较短,因 此有时无法运算出热变位量的修正量。

若增加运算区间的长度,则与运算区间的设定长度较短的情形相比, 运算区间数减少。因此,不会发生无法运算出热变位量的修正量的问题。 不过,若增加运算区间的设定长度,则与运算区间的设定长度较短的情形 相比,热变位量的运算精度降低。因此,上述情形存在加工精度降低的问 题。所以,为了抑制运算处理的负荷,且实现目标加工精度,热变位量修 正装置需要将运算区间的长度设定为合适的长度。

以往的热变位量修正方法如下所述设定运算区间。将热变位修正量的 运算区间的分割位置设成与机床坐标的原点(X0)一致的位置。将滚珠丝杠 轴81的螺母部移动范围81b中运算区间的长度设为节距误差修正的修正区 间的长度的整数倍。图12表示例如运算区间的长度为20mm×4=80mm,且 机床坐标的原点X0与运算区间的分割位置一致的例子。

在图12中,前侧轴部81a的长度为100mm。螺母部移动范围81b的长 度为300mm。后侧轴部81c的长度为100mm。上述情形下,运算区间1的长 度为80mm。运算区间2的长度为20mm。运算区间3至运算区间5的长度分 别为80mm。运算区间6的长度为60mm。运算区间7的长度为80mm。运算区 间8的长度为20mm。无法用运算区间的区间长度(80mm)分割的部分为运算 区间2、运算区间6、运算区间8。

使用在各运算区间中运算出的热变位量,按照下述方法进行节距误差 修正量的修正。热变位量修正装置将运算区间1、运算区间2的总计热变位 量作为位置X0的热变位量,来修正X0的节距误差修正量。热变位量修正 装置基于运算区间3的长度是修正区间的长度的4倍,如下所述对位置X20、 X40、X60、X80的热变位量进行运算。热变位量修正装置将运算区间3的热 变位量的1/4等分到位置X20、X40、X60、X80,并运算各位置的热变位量。 热变位量修正装置使用该热变位量来修正各位置的节距误差修正量。对于 其它运算区间,与上述同样地,对节距误差修正量进行修正。

现有技术文献

专利文献

专利文献1:日本专利特开昭63-256336号公报

专利文献2:日本专利特开平4-240045号公报

专利文献3:日本专利特开平7-299701号公报

发明内容

在上述分割方法中,运算区间2、运算区间6、运算区间8的长度分别 比运算区间的区间长度(80mm)短。在上述分割方法中,运算区间数因无法 用运算区间的区间长度来分割的部分中长度最小(20mm)的运算区间2、运算 区间8而增加。因此,必须根据运算区间数将运算热变位量的运算周期设 定得较小。所以,热变位量修正装置的运算处理的负荷增加。

在图13所示的方法中,将图12中的运算区间2加到运算区间1,将 运算区间6加到运算区间5,将运算区间8加到运算区间7。在图13所示 的方法中,运算区间2、运算区间3的长度(80mm)变为确定运算热变位量的 运算周期的长度。因此,图13所示的方法能抑制热变位量修正装置的运算 处理的负荷。从滚珠丝杠轴81的前侧轴部81a到螺母部移动范围81b的范 围会对热变位量的运算精度带来影响。运算区间1、运算区间4的长度分别 比运算区间的长度长。因此,热变位量的运算精度降低,可能无法实现目 标加工精度。

本发明的目的在于提供一种能抑制数控装置的运算处理的负荷,且能 进行高精度的热变位量修正的机床的热变位量修正方法及热变位量修正装 置。

技术方案1的机床的热变位量修正方法具有:包括轴和螺母的送料驱 动用滚珠丝杠机构;驱动供上述滚珠丝杠机构的上述螺母螺合的上述轴旋 转的伺服马达;以及根据控制数据对上述伺服马达进行控制的控制部,在 上述轴上预先设置与上述伺服马达连接的固定侧端部、与上述固定侧端部 相反一侧的可动侧端部,当在上述机床工作中对上述轴的热变位量进行运 算时,将上述轴的全长设定为:从上述固定侧端部按一定长度分割而成的 多个运算区间、包括上述可动侧端部且具有上述一定长度以上长度的运算 区间,并对各上述运算区间的发热量和温度分布进行运算。

技术方案1的热变位量修正方法将轴的全长从固定侧端部分割成具有 一定长度的运算区间,并将包括可动侧端部在内的运算区间的长度设定成 一定长度以上,且对各运算区间的发热量和温度分布进行运算。热变位量 修正方法无需使热变位量修正的运算区间的分割位置与节距误差修正的修 正区间的分割位置一致。因此,在热变位量修正方法中,通过将运算区间 的区间长度设定得较长,能使运算热变位量的运算周期变长,从而能降低 热变位量修正装置的运算处理的负荷。此外,在包括可动侧端部在内的运 算区间比其它运算区间长的情况下,与其它运算区间相比,运算包括可动 侧端部在内的运算区间的温度分布时产生误差的可能性增加。可动侧端部 远离热源即伺服马达。由于与其它运算区间相比,包括可动侧端部在内的 运算区间的温度分布的误差的影响度较小,因此不会产生问题。

由于热变位量修正方法能避免将运算区间的区间长度不必要地设定得 较长,因此能进行高精度的热变位量修正。热变位量修正方法通过将运算 区间的区间长度设定成合适的大小,能抑制热变位量修正装置的运算处理 的负荷,且能实现目标加工精度。

技术方案2的机床的热变位量修正方法将上述轴的全长中上述螺母能 移动的范围即螺母移动范围分割成比上述运算区间短的多个修正区间,并 使用上述热变位量对在各上述多个修正区间中修正节距误差的节距误差修 正量进行修正。

根据技术方案2的热变位量修正方法,能使运算热变位量的运算周期 变长,且能降低热变位量修正装置的运算处理的负荷。

技术方案3的机床的热变位量修正方法具有:包括轴和螺母的送料驱 动用滚珠丝杠机构;驱动供上述滚珠丝杠机构的上述螺母螺合的上述轴旋 转的伺服马达;以及根据控制数据对上述伺服马达进行控制的控制部,该 热变位量修正方法将上述轴的全长中上述螺母能移动的范围即螺母移动范 围分割成多个修正区间,并对各上述多个修正区间进行节距误差修正,在 上述轴上预先设置与上述伺服马达连接的固定侧端部、与上述固定侧端部 相反一侧的可动侧端部,将上述轴的全长设定为:从上述固定侧端部被分 割成比上述修正区间长的一定长度的运算区间的多个运算区间、包括上述 可动侧端部且具有上述一定长度以上长度的运算区间,该热变位量修正方 法包括:第一步骤,在该第一步骤中,对于各上述运算区间,根据上述伺 服马达的转速和控制数据,每隔规定时间对各上述运算区间的发热量进行 运算;第二步骤,在该第二步骤中,根据使各上述运算区间的上述发热量 累积规定期间而得到的总计发热量和不稳定热传导方程式,每隔上述规定 期间对各上述运算区间的温度分布进行运算;第三步骤,在该第三步骤中, 根据上述温度分布,每隔上述规定期间对各上述运算区间的热变位量进行 运算;以及第四步骤,在该第四步骤中,根据各上述运算区间的上述热变 位量,每隔上述规定期间对分别修正各上述修正区间的节距误差修正量的 修正量进行运算。

根据技术方案3的热变位量修正方法,起到了与技术方案1同样的作 用。热变位量修正方法能使运算热变位量的运算周期变长,且能降低数控 装置的运算处理的负荷。热变位量修正方法通过将运算区间的区间长度设 定成合适的大小,能抑制热变位量修正装置的运算处理的负荷,且能实现 目标加工精度。

技术方案4的机床的热变位量修正装置具有:包括轴和螺母的送料驱 动用滚珠丝杠机构;驱动供上述滚珠丝杠机构的上述螺母螺合的上述轴旋 转的伺服马达;以及根据控制数据对上述伺服马达进行控制的控制部,该 热变位量修正装置将上述轴的全长中上述螺母能移动的范围即螺母移动范 围分割成多个修正区间,并对各上述多个修正区间进行节距误差修正,上 述轴具有与上述伺服马达连接的固定侧端部、与上述固定侧端部相反一侧 的可动侧端部,该热变位量修正装置具有对上述伺服马达的转速进行检测 的速度检测设备,将上述轴的全长设定为:从上述固定侧端部被分割成比 上述修正区间长的一定长度的运算区间的多个运算区间、包括上述可动侧 端部且具有上述一定长度以上长度的运算区间,该热变位量修正装置包括: 发热量运算部,对于各上述运算区间,该发热量运算部根据上述伺服马达 的转速和控制数据,每隔规定时间对各上述运算区间的发热量进行运算; 温度分布运算部,该温度分布运算部根据使各上述运算区间的上述发热量 累积规定期间而得到的总计发热量和不稳定热传导方程式,每隔上述规定 期间对各上述运算区间的温度分布进行运算;热变位量运算部,该热变位 量运算部根据上述温度分布,每隔上述规定期间对各上述运算区间的热变 位量进行运算;以及修正量运算部,该修正量运算部根据各上述运算区间 的上述热变位量,每隔上述规定期间对分别修正各上述修正区间的节距误 差修正量的修正量进行运算。

根据技术方案4的热变位量修正装置,起到了与技术方案1同样的作 用。由于热变位量修正装置包括速度检测设备、发热量运算设备、温度分 布运算设备、热变位量运算设备及修正量运算设备,因此能实现与技术方 案3同样的效果。

附图说明

图1是机床的整体立体图。

图2是以机床的主轴头及工具更换装置作为中心的主视图。

图3是X轴滚珠丝杠机构的结构图。

图4是机床的控制系统的框图。

图5是将滚珠丝杠轴的全长分隔成多个运算区间的说明图。

图6是多个运算区间的总计发热量等的存储数据的说明图。

图7是分配到多个运算区间的分配发热量与温度的说明图。

图8是用于节距误差修正量的修正区间的说明图。

图9是表示以固定轴承为基准的各区间分隔位置处的热变位量的说明 图。

图10是热变位量修正控制程序的流程图。

图11是修正量运算处理程序的流程图。

图12是现有技术的与图5相当的图。

图13是另一现有技术的与图5相当的图。

具体实施方式

以下,对用于实施本发明的实施方式进行说明。

实施例1

参照图1至图4,对机床M的结构进行说明。图1的右下方是机床M 的前方。机床M通过使工件(未图示)和工具6朝XYZ正交坐标系的各轴向 独立地相对移动,能对工件进行所期望的机械加工(例如,“铣削”、“钻 孔”、“切削”等)。机床M(机床主体2)的X轴方向、Y轴方向、Z轴方向 分别是机床M(机床主体2)的左右方向、前后方向、上下方向。

如图1所示,机床M将底座1、机床主体2、盖(未图示)作为结构的主 体。底座1是Y轴方向较长的大致长方体状的铸造件。机床主体2设于底 座1的上部。机床主体2对工件进行切削加工。盖固定于底座1的上部。 盖形成覆盖机床主体2和底座1上部的箱状。

下面对机床主体2进行说明。机床主体2将立柱4、主轴头5、主轴 5A、工具更换装置(ATC)7、工作台8作为结构的主体。立柱4呈大致棱柱 状,固定在设于底座1后部的立柱座部3上。主轴头5可沿立柱4升降。 主轴头5将主轴5A支撑成能在其内部旋转。工具更换装置7设于主轴头5 的右侧。工具更换装置7使安装有位于主轴5A前端的工具6的工具保持件 与工具库14中收纳的工具保持件进行更换。工作台8设于底座1的上部。 工作台8将工件固定成可装拆。控制箱9呈箱状。控制箱9设于立柱4的 背面侧。数控装置50(参照图4)设于控制箱9的内侧。数控装置50控制机 床M的动作。数控装置50具有热变位量修正装置的功能。

参照图1、图4,对工作台8的移动机构进行说明。伺服马达即X轴马 达71驱动工作台8在X轴方向上移动。伺服马达即Y轴马达72驱动工作 台8在Y轴方向上移动。X轴马达71设于支撑台10上。Y轴马达72设于 底座1上。支撑台10设于工作台8的下侧。支撑台10在其上表面设有沿X 轴方向延伸的一对X轴送料导向件(未图示)。一对X轴送料导向件将工作 台8支撑成能在其上方移动。

如图3所示,螺母部8a配置于工作台8的下表面。螺母部8a与X轴 滚珠丝杠轴81螺合,从而构成X轴滚珠丝杠机构。X轴滚珠丝杠轴81经由 连接器17与X轴马达71连接。固定轴承18固定于支撑台10。固定轴承 18对X轴滚珠丝杠轴81的靠X轴马达71侧(固定侧)的固定侧端部81e进 行支撑。可动轴承19对可动侧端部81f进行支撑。可动侧端部81f位于固 定侧端部81e的相反侧(可动侧)。可动轴承19可沿X轴滚珠丝杠轴81的 轴向移动。

一对Y轴送料导向件(未图示)设于底座1的上侧。一对Y轴送料导向 件沿底座1的Y轴方向延伸。Y轴送料导向件将支撑台10支撑成能移动。 工作台8在X轴马达71的驱动下,沿着X轴送料导向件在X轴方向上移动。 支撑台10在Y轴马达72的驱动下,沿着Y轴送料导向件在Y轴方向上移 动。Y轴的移动机构与X轴的移动机构相同,也是滚珠丝杠机构。

盖11、12在工作台8的左右两侧覆盖X轴送料导向件。盖11、12能 伸缩。盖13和Y轴后盖(未图示)分别在支撑台10的前后两侧覆盖Y轴送 料导向件。即便在工作台8在X轴方向和Y轴方向中的任一个方向上移动 的情况下,盖11、12、13和Y轴后盖也始终能覆盖X轴送料导向件和Y轴 送料导向件。盖11、12、13和Y轴后盖能防止从加工区域飞散出的切屑及 冷却液落到各送料导向件的导轨上。

参照图1、图2,对主轴头5的升降机构进行说明。立柱4对沿上下方 向延伸的Z轴滚珠丝杠轴(未图示)进行支撑。螺母部(未图示)与Z轴滚珠 丝杠轴螺合。螺母部对主轴头5进行支撑。Z轴马达73(参照图4)驱动Z 轴滚珠丝杠轴沿正反方向旋转。通过Z轴马达73(参照图2及图4)驱动Z 轴滚珠丝杠轴沿正反方向旋转,主轴头5被驱动在Z轴方向上升降。轴控 制部63a(参照图4)根据来自数控装置50的CPU51(参照图4)的控制信号, 驱动Z轴马达73。主轴头5在Z轴马达73的驱动下被驱动而升降。

如图1、图2所示,工具更换装置7包括工具库14、工具更换臂15。 工具库14收纳有多个支撑工具6的工具保持件(未图示)。工具更换臂15 把持住安装于主轴5A的工具保持件和其它工具保持件,且进行搬运和更换。 工具库14在其内侧设有多个工具座(未图示)和搬运机构(未图示)。工具座 支撑工具保持件。搬运机构在工具库14内搬运工具座。

参照图4,对数控装置50的电气结构进行说明。作为机床M的控制部 的数控装置50包括微型计算机。数控装置50包括输入输出接口54、CPU51、 ROM52、闪速存储器53、轴控制部61a~64a及75a、伺服放大器61~64、 微分器71b~74b等。轴控制部61a~64a分别与伺服放大器61~64连接。 伺服放大器61~64分别与X轴马达71、Y轴马达72、Z轴马达73、主轴马 达74连接。轴控制部75a与库马达75连接。

X轴马达71及Y轴马达72分别是用于使工作台8在X轴方向、Y轴方 向上移动的马达。Z轴马达73是用于驱动主轴头5在Z轴方向上升降的马 达。库马达75是用于使工具库14旋转移动的马达。主轴马达74是用于使 主轴5A旋转的马达。X轴马达71、Y轴马达72、Z轴马达73、主轴马达74 分别包括编码器71a~74a。

轴控制部61a~64a接收到来自CPU51的移动指令量,将电流指令(马 达转矩指令值)输出到伺服放大器61~64。伺服放大器61~64接收到电流 指令,将驱动电流输出到马达71~74。轴控制部61a~64a接收到来自编码 器71a~74a的位置反馈信号,进行位置的反馈控制。微分器71b~74b对 编码器71a~74a输出的位置反馈信号进行微分运算,将其转换成速度反馈 信号。微分器71b~74b将速度反馈信号输出到轴控制部61a~64a。

轴控制部61a~64a接收到来自微分器71b~74b的速度反馈信号,进 行速度反馈控制。电流检测器61b~64b对伺服放大器61~64输出到马达 71~74的驱动电流进行检测。电流检测器61b~64b将检测到的驱动电流反 馈到轴控制部61a~64a。轴控制部61a~64a根据电流检测器61b~64b反 馈的驱动电流进行电流(转矩)控制。轴控制部75a接收到来自CPU51的移 动指令量,驱动库马达75。

ROM52中存储有执行机床M的加工程序的主要的控制程序、热变位量 修正控制的控制程序(参照图10)、运算对节距误差修正量进行修正的修正 量的修正量运算处理的控制程序(参照图11)。闪速存储器53中存储有关于 机床构造的参数、关于物理性质的参数、热分配系数(比例)ηN、ηF及ηB、 节距误差修正量的图表等。有关机床构造的参数例如有滚珠丝杠轴81的长 度及直径。有关物理性质的参数例如有密度及比热。闪速存储器53还合适 地存储有用于对各种工件进行机械加工的多个加工程序。闪速存储器53存 储CPU51的运算结果。

节距误差修正量的图表是用于分别修正X轴、Y轴、Z轴的各轴滚珠丝 杠机构的节距误差的图表。滚珠丝杠机构的节距误差因制造公差等而产生。 在本实施例中,根据预先设定的节距误差修正量的图表对滚珠丝杠轴81的 旋转量与螺母部8a的移动量之间的节距误差进行修正。在通过本实施例的 热变位量修正方法修正热变位的情况下,使用运算出的热变位来修正上述 节距误差修正量。本实施例是修正X轴滚珠丝杠轴81的热变位的例子,但 对于Y轴的滚珠丝杠机构、Z轴的滚珠丝杠机构也基本相同。

如图8所示,螺母部8a可在X轴滚珠丝杠轴81的全长中的螺母部移 动范围81b内移动。在每个修正区间都进行节距误差修正。设定于螺母部 移动范围81b的修正区间是比后述运算区间短的多个区间。多个修正区间 具体是指按20mm的设定长度设定的15个区间。用于修正节距误差的节距 误差修正量是在机床M制造后的调节阶段按照以下步骤获取的值。螺母部 8a根据指令值,从位置X0至位置X300沿X轴方向以20mm的间隔在每个修 正区间中移动。在本实施例中,对移动指令值的误差、即(目标值-实际移 动量)这样的误差进行精密地测定。在本实施例中,根据测定结果,制成节 距误差修正量的图表。在本实施例中,将制成的图表预先存储于闪速存储 器53后出货。在本实施例中,对于Y轴方向及Z轴方向也同样地制成节距 误差修正量的图表。

下面对热变位量的运算方法进行说明。在机床M工作中,随着数控动 作,产生热变位量。如图5所示,在本实施例中,对滚珠丝杠轴81的前侧 轴部81a、螺母部移动范围81b、滚珠丝杠轴81的后侧轴部81c这三个区 域的发热量进行运算。在本实施例中,根据三个区域的发热量,对在长度 方向的全长上将滚珠丝杠轴81分割而成的六个运算区间的发热量进行运 算。

[总计发热量的运算]

图5所示的滚珠丝杠轴81的前侧轴部81a及后侧轴部81c的长度分别 为100mm。螺母部移动范围81b的长度为300mm。滚珠丝杠轴81的全长为 500mm。运算区间的长度为80mm。因此,若从固定侧端部81e按照运算区间 的长度等间隔地分割,则螺母部移动范围81b的靠可动轴承19侧的末端与 运算区间5的分割点一致。若按照运算区间分割后侧轴部81c,则后侧轴部 81c被分成80mm和20mm这两个区间。在本实施例中,将包含可动侧端部 81f的运算区间设定成80mm以上的运算区间。因此,运算区间6的长度为 100mm。

在本实施例中,每隔规定时间(例如50ms),根据加工程序的X轴送料 数据(控制数据),判断螺母部8a存在于哪个运算区间。在本实施例中,根 据工作台8的送料速度,按照下式运算出发热量。工作台8的送料速度是 根据X轴马达71的实际转速而确定的。X轴马达71的实际转速是根据编码 器71a的检测信号而确定的。闪速存储器53的数据区域中存储有运算出的 发热量。按照下式运算发热量。

Q=K1×FT

Q是发热量。F是工作台8的送料速度。K1及T分别是规定的常数。

在本实施例中,使用上式,在规定期间(例如6400ms)内每隔50ms对 各运算区间内因螺母部8a的移动而产生的发热量进行运算,共运算128次。 在本实施例中,按照各运算区间合计在规定期间内运算得到的发热量,从 而运算出各运算区间的发热量Q1~Q6。如图6所示,本实施例将发热量Q1~ Q6与运算区间1~6对应地存储于闪速存储器53。在本实施例中,运算出总 计发热量QT,并将其存储于闪速存储器53。总计发热量QT是将发热量Q1~ Q6加起来得到的发热量。

[总计发热量的分配]

以下所示的总计发热量QT的分配方法是基于与日本专利特许公开1992 年第240045号公报中同样的方法进行的。即,在滚珠丝杠轴81的螺母部 移动范围81b、前侧轴部81a和后侧轴部81c中,相互不会产生朝向其它部 分的热传导,可认为在热传导上近似独立。各发热部的发热量与总计发热 量QT的比例与送料速度的变化无关,大致一定。

CPU51按照下式对各发热部的分配发热量进行运算。

QF=ηF×QT

QN=ηN×QT

QB=ηB×QT

发热量QF是因固定轴承18的旋转而引起的前侧轴部81a的发热量。发 热量QN是螺母部移动范围81b的发热量。发热量QB是因可动轴承19的旋转 而引起的后侧轴部81c的发热量。比例ηF是发热量QF与总计发热量QT的 比例。比例ηN是发热量QN与总计发热量QT的比例。比例ηB是发热量QB与总计发热量QT的比例。如上述方法所示,比例ηF、ηN、ηB是一定的。 因此,比例ηF、ηN及ηB是使用实际设备测定QF、QN、QB而预先运算出的 值。

[螺母部移动范围发热量的分配]

在本实施例中,将螺母部移动范围81b的发热量QN分配到六个运算区 间中。在本实施例中,根据发热量Q1~Q6和总计发热量QT,按照下式对分 配比例X1~X6进行运算。分配比例X1~X6是将发热量QN分别分配到六个运 算区间的发热量的比例。发热量Q1~Q6和总计发热量QT分别存储于数据区 域。

X1=运算区间1的发热量Q1/QT

X6=运算区间6的发热量Q6/QT

在本实施例中,在运算出六个运算区间的分配比例X1~X6后,使用分 配比例和螺母部移动范围81b的发热量QN,按照下式运算六个运算区间的 分配发热量QN1~QN6

QN1=X1×QN

QN6=X6×QN

根据图5,能将各部的温度和各运算区间的发热量如图7所示地表示。

[温度分布的运算]

在本实施例中,在运算出六个运算区间的发热量后,根据各运算区间 的发热量对温度分布进行运算。若解出下面的不稳定热传导方程式,则能 运算出温度分布。其中,初始条件为{θ}t=0={θ0},θ0是初始温度。

[C]d{θ}/dt+[H]{θ}+{Q}=0

[C]是热容量矩阵。[H]是热传导矩阵。{θ}是温度分布。{Q}是发热量。 t是时间。

[热变位量的运算]

如图7所示,在本实施例中,对滚珠丝杠轴81的六个运算区间的温度 θ1~θ6进行运算。在本实施例中,根据运算出的温度θ1~θ6,对滚珠丝 杠轴81的六个运算区间分割位置(与图7的θ1~θ6对应的位置)的热变位 量进行运算。按照下式对六个运算区间分割位置的热变位量进行运算。

ΔL=0Lβ×θ(L)dL---(1)

ΔL是热变位量。β是滚珠丝杠轴材料的线膨胀系数。积分记号表示对 0~L的范围的积分。L表示到达与六个运算区间有关的运算区间分割位置 的长度。具体而言,上式表示对0~80、0~160、0~240、……等范围的积 分。

[修正量的运算]

在本实施例中,在对滚珠丝杠轴81的六个运算区间分割位置的热变位 量进行运算后,运算分别对16个修正区间分割位置的节距误差修正量进行 修正的修正量。本实施例的螺母部移动范围81b是X0~X300(300mm的范围) 的区间。各修正区间的长度为20mm。因此,在本实施例中,对X0、X20、 X40、……、X300这16个位置处的修正量进行运算。按照图9和后述[修正 量运算式]的式子能对16个修正区间分割位置的修正量进行运算。

参照图9,说明对修正节距误差修正量进行修正的修正量的情况。图9 的纸面上侧的图表的纵轴表示以固定轴承18的位置为基准的热变位量。纸 面上侧的图表的横轴表示以固定轴承18为基准的滚珠丝杠轴81的各部的 位置。纸面下侧的横轴表示16个修正区间的分割位置(X0、X20、……、X300)。

DF1是运算区间1的热变位量。

DF2是运算区间1与运算区间2的热变位量的总计。

DF6是运算区间1~运算区间6的热变位量的总计。

如图9所示,在本实施例中,按照下式对16个修正区间的分割位置(X0、 X20、……、X300)的修正量进行运算。

[修正量运算式]

X0的修正量=(运算区间1的热变位量)+(运算区间2的热变位量)× {(运算区间2的左分割位置与X0之间的长度)/(运算区间2的长度)}

X20的修正量=(运算区间1的热变位量)+(运算区间2的热变位量)× {(运算区间2的左分割位置与X20之间的长度)/(运算区间2的长度)}-(X0 的修正量)

X40的修正量=(运算区间1的热变位量)+(运算区间2的热变位量)× {(运算区间2的左分割位置与X40之间的长度)/(运算区间2的长度)}- (X20的修正量)

X60的修正量=(运算区间1的热变位量)+(运算区间2的热变位量)× {(运算区间2的左分割位置与X60之间的长度)/(运算区间2的长度)}- (X40的修正量)

X80的修正量=(运算区间1的热变位量)+(运算区间2的热变位量)+ (运算区间3的热变位量)×{(运算区间3的左分割位置与X80之间的长 度)/(运算区间3的长度)}-(X60的修正量)

X300的修正量=(运算区间1的热变位量)+(运算区间2的热变位量) +(运算区间3的热变位量)+(运算区间4的热变位量)+(运算区间5的热变 位量)+(运算区间6的热变位量)×{(运算区间6的左分割位置与X300之间 的长度)/(运算区间6的长度)}-(X280的修正量)

参照图10,对数控装置50执行的热变位量修正控制的步骤进行说明。 图中Si(i=1、2……)表示各步骤。由于热变位量修正控制与以上说明的内 容重复的部分较多,因此进行简单的说明。实际的按对工件的数控程序进 行的机械加工与热变位量修正控制并行执行。

当开始热变位量修正控制时,CPU51在步骤S1中执行初始设定。CPU51 在步骤S1中根据参数等设定数据,设定按有限元法进行运算所需的矩阵。 CPU51在步骤S1中设定初始温度。CPU51在步骤S1中执行将闪速存储器53 的关联存储区域清空等处理。如图5所示,CPU51在步骤S2中将滚珠丝杠 轴81的延伸范围分割成六个运算区间1~6。

CPU51在步骤S3中将计数器I设定为0。CPU51在步骤S4中读入X轴 送料数据和编码器71a的检测信号。CPU51在步骤S5中对运算区间1~6 的每50ms的发热量进行运算,并将运算出的发热量存储于闪速存储器53。 CPU51在步骤S6中使计数器I加1。CPU51在步骤S7中判断计数器I的计 数值是否比“127”大。CPU51在步骤S7的判断为否时,返回步骤S4,重 复步骤S4至步骤S6的处理。CPU51在步骤S7的判断为是时,转移到步骤 S8的处理。CPU51在步骤S8中对各运算区间1~6的6400ms间的发热量Q1~ Q6、发热量Q1~Q6的总计发热量QT进行运算,并将运算结果存储于闪速存储 器53。

CPU51在步骤S9中对上述各部的发热量QF、QN、QB进行运算,并将运 算结果存储于闪速存储器53。CPU51对朝运算区间1~6的分配发热量QN1~ QN6进行运算,并将运算结果存储于闪速存储器53。CPU51对图7所示的运 算区间1~6的发热量进行运算,并将运算结果存储于闪速存储器53。CPU51 在步骤S10中根据图7所示的各部的发热量,对运算区间1~6的温度θ1~ θ6进行运算,并将运算结果存储于闪速存储器53。

CPU51在步骤S11中,根据上述(1)式,对六个运算区间的运算区间分 割位置的热变位量进行运算,并将运算结果存储于闪速存储器53。CPU51 在步骤S12中,根据上述修正量运算式,如上所述对16个修正区间分割位 置的修正量进行运算。CPU51在步骤S13中,使用在步骤S12中运算出的修 正量,对16个修正区间分割位置执行预先设定的对于节距误差修正量的修 正处理。CPU51执行使用修正处理后的节距误差修正量的送料量修正处理。 CPU51在步骤S14中判断热变位量修正的处理是否已结束。CPU51在判断结 果为否时,返回步骤S3并重复执行步骤S3以后的步骤。当步骤S14的判 断结果为是时,热变位量修正控制结束。

参照图11,对修正量运算处理进行说明。修正量运算处理是运算步骤 S12的对节距误差修正量进行修正的修正量的处理。图中Si(i=20、21……) 表示各步骤。当开始修正量运算处理时,CPU51将计数n设定为0(S20)。 CPU51按照下式对位置Xn的修正量ΔMn进行运算(S21)。

CPU51最初按照ΔMn=DF+ΔDn×{(Xn-XF)/Ln}-ΔMn-20、n=0,对位置X0 的修正量ΔM0进行运算。上式是简单地表示上述修正量运算式的式子。DF是在较位置Xn靠固定侧的运算区间中产生的热变位量的总计。ΔDn是在包 括位置Xn在内的运算区间中产生的热变位量。XF是包括位置Xn在内的运 算区间的左分割位置。Ln是包括位置Xn在内的运算区间的长度。将运算Δ M0时使用的ΔMn-20设为0。

CPU51在步骤S22中使n加上20。CPU51在步骤S23中判断n是否为 320。CPU51在n不是320的情况下(S23:否),判断为对于直至位置X300 的修正量的运算没有结束,朝步骤S21返回并运算位置Xn的修正量ΔMn。 CPU51在运算到位置X300的修正量ΔM300之前,重复执行S21至S23的处理。 当CPU51运算修正量ΔM300时(S21)、在步骤S22中,n=320。步骤S23的 判断变为是。CPU51结束图11的处理,并朝图10的步骤S14转移。

编码器71a相当于“速度检测设备”。执行步骤S3~步骤S7的CPU51 相当于“发热量运算部”。执行步骤S8~步骤S10的CPU51相当于“温度 分布运算部”。执行步骤S11的CPU51相当于“热变位量运算部”。执行 步骤S12的CPU51相当于“修正量运算部”。

下面对以上说明的机床M的热变位量修正方法及热变位量修正装置 (数控装置50)的作用和效果进行说明。运算区间是将滚珠丝杠机构的滚珠 丝杠轴81的全长从固定侧端部81e按照比修正区间长的一定长度分割而成 的区间。包括可动侧端部81f在内的运算区间的长度在一定长度以上。CPU51 对多个运算区间的发热量和温度分布进行运算。CPU51根据运算结果对多个 运算区间的分割位置处的热变位量进行运算。CPU51运算对节距误差修正量 进行修正的修正量。因此,热变位量修正方法及热变位量修正装置(数控装 置50)具有下述效果。

数控装置50无需使运算区间的分割位置与修正区间的分割位置一致。 因此,数控装置50通过将运算区间的区间长度设定得较长,能使运算热变 位量的运算周期变长。数控装置50能降低数控装置50的运算处理的负荷。

由于数控装置50能避免将运算区间的区间长度不必要地设定得较长, 因此能进行高精度的热变位量修正。数控装置50通过将运算区间的区间长 度设定成合适的大小,能抑制数控装置50的运算处理的负荷,且能实现目 标加工精度。

下面对局部变更了上述实施例的变形例进行说明。

1)在上述实施例中,对将本发明的热变位量修正装置及热变位量修正 方法应用于X轴的滚珠丝杠机构的热变位量修正的情形进行了说明。本发 明也可应用于Y轴的滚珠丝杠机构及Z轴的滚珠丝杠机构的热变位量修正。

2)在上述实施例中,数控装置50按照80mm间隔(修正区间的设定长度 的4倍)将滚珠丝杠轴81的前侧轴部81a和螺母部移动范围81b分割成五 个运算区间。运算区间只要比修正区间长即可。例如,运算区间也可设定 为修正区间的设定长度的1.5倍及3倍等4倍以外的长度。

3)在上述实施例中,机床M在滚珠丝杠轴81的前侧轴部81a侧包括X 轴马达71。当机床M在滚珠丝杠轴81的后侧轴部81c侧设有X轴马达71 时,数控装置50也能通过与上述实施例相同的方法对滚珠丝杠轴81的六 个运算区间的热变位量进行运算。

4)在上述实施例中,作为一例,对发热量进行运算的运算周期为50ms, 但运算周期并不限定于50ms。6400ms的规定期间是一例。规定期间并不限 定于6400ms。例如,规定期间也可不以ms为单位而以秒为单位。

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号