首页> 中国专利> 用于在微流通道网络中使用光学开关将细胞分类的方法和设备

用于在微流通道网络中使用光学开关将细胞分类的方法和设备

摘要

提供了用于基于光学开关的微构荧光促动细胞分选器的设备和方法,用于快速有源控制细胞选择路线穿过微流通道网络。该分选器能够低应力高效分选少量细胞群体(即,1000-100000个细胞)。本发明包括将微流通道网络包装在独立塑料盒中,这使得微流通道网络能够按照无菌一次性方式与宏观仪器相互连接。

著录项

法律信息

  • 法律状态公告日

    法律状态信息

    法律状态

  • 2018-02-23

    专利权的转移 IPC(主分类):G01N33/48 登记生效日:20180131 变更前: 变更后: 申请日:20040827

    专利申请权、专利权的转移

  • 2016-11-23

    专利权的转移 IPC(主分类):G01N33/48 登记生效日:20161101 变更前: 变更后: 申请日:20040827

    专利申请权、专利权的转移

  • 2011-12-28

    授权

    授权

  • 2007-01-03

    实质审查的生效

    实质审查的生效

  • 2006-11-08

    公开

    公开

说明书

相关申请

本申请要求了于2003年8月28日提交的题目为“MicrosorterCartridge”的美国临时申请No.60/499294和于2004年5月26日提交的题目为“Optical Switch to Enable Cell Sorting in a MicrofluidicChannel Network”的美国临时申请No.60/574897的优先权,这些申请其全文在这里被引用作为参考。

技术领域

本发明涉及用于在微流通道网络中使用光学力(optical force)来提供一种光学开关的方法和设备,该光学开关使得目标细胞能够选择定向穿过(routing through)该网络以便将它们从非目标细胞中分选出来并且收集它们。

背景技术

传统的荧光激活细胞分选器(FACS)被广泛用在研究和临床应用1中。这些仪器能够进行非常迅速的多参数分析和分选,但是通常需要大量试样和用于操作和维护的熟练操作人员,并且难以消毒。FACS能够分析少至10,000并且多至几千万个细胞。但是,低于100000个细胞,则进行分选的能力降低1。其它分离方法例如磁珠不需要与FACS一样多的细胞,但是它们会出现细胞和磁珠的非特定粘接、聚集并且出现磁珠自身可能在随后的处理步骤中干涉(interfere)的问题。因此,为了分选来自初生组织的宝贵较小试样或细胞,能够处理具有较低细胞数的小试样体积并且允许有效恢复所分选的群体的细胞分选器具有独特的科学环境。

微制造的血细胞计数器具有能在一个易于使用的封闭系统中分选少至1000个细胞并同时消耗较少的试剂的可能性。后者是重要的,因为与传统的FACS仪器不同,不会产生气溶胶,降低了分选细胞受污染的风险和与生物毒害性材料一起工作的风险。已经描述了几个微制造的细胞分选器,但是大部分作为“概念的证明”。Fu等人2报导了E.coli在17个细胞/秒的通过量下的30倍富集。在分选之后仅有20%的细菌存活,并且在目标容器内的分选纯度是30%。在后面的研究3中,通过量提高至44个细胞/秒,但是目标纯度降低至小于10%,所报导的恢复率为39%。Wolff等人4能够以100倍的富集,以12000事件/秒的通过量从小鸡的红细胞中分选出珠(bead)。但是目标井中的纯度大约是1%。在这些研究中,富集被定义为,与起始浓度相比,在收集井中的目标群体浓度的增长。纯度指分选的精度,是所分选的目标细胞在分选进收集井中的所有细胞上的百分比。恢复率被定义为荧光检测器所计数的细胞数对从收集井中恢复的细胞的比值。后两项研究在微流设备中使用了压力开关,它切换整个流体流路,并且因此切换在流体插头(plug)中含有的任何颗粒。这些开关中的机械顺应性导致流体开关速度成为通过量的速率限制台阶3。也已经报导了动电流体控制,例如电渗2,5,6和介电电泳7,8,9,但是高电场梯度和在缓冲溶液的离子强度上的物理化学限制对于细胞来说是非理想条件。

Buican等人9首先提出使用光学力来检测通过流体通道的颗粒。由光束施加在颗粒上的力是颗粒及其周围流体介质的光强度和相对光学性能的函数。对于直径大约为10μm的生物细胞可以实现大约1pN/mW的力。虽然该光学力较小,但是使细胞偏转进入附近的细胞流中所需的力也较小例如为900pN以使直径为10μm的细胞在几个毫秒内横向越过细胞流运动20-40μm。这是以由这个横向运动隐含的速度克服在细胞上的粘性拖曳力所需的力。

在美国专利6744038中可以找到在这些光学力和一般背景技术后面的原理,该文献其全文在这里被应用作为参考。

发明内容

如下面所述,这些光学力用来实现可操作作为细胞分选系统的微流通道网络中的光学开关。通过检测来自在光学开关位置上游在微流通道网络中流动的目标细胞的荧光信号来触发该光学开关,虽然同样可以采用其它检测方法例如光散射来促动光学开关。该光学开关用来在不改变下面液流的情况下将细胞或颗粒引导进多条输出通道液流中的一条,由此收集所期望的细胞以便另外使用。重要的是,在微流通道中的液流通常以非常低的Reynolds数分层。因此,在特定层或液流中流动的任意细胞在没有存在任何与横越该层的力的情况下将留在那个液流中。光学开关利用在细胞上的光学力来正好实现细胞横越该层的这个运输,从而使细胞从通过一条输出通道离开分叉交界处的液流运动到位于通过第二条输出通道离开所述分叉交界处的液体。

在前面段落中所述的本发明详细描述了用来形成光学开关的方法以及用来优化该光学开关的方案、微流通道网络的设计和细胞或颗粒在微流网络中的流动性能以便实现分选性能的提高。该光学开关通常通过将光学照明场投射到在微流通道中建立的液流中的细胞轨迹附近的微流通道网络中来工作。细胞与光场的相互作用产生出在细胞上的力,该力使之横越所建立的液流输送,从而它在所建立的流中从一条液流运动到另一条液流,而不会俘获该细胞或明显改变其在主流中的运动。

在下面的内容中,术语细胞和颗粒两者都应该被理解为指的是生物细胞、生物颗粒、天然有机或无机颗粒和人造有机或无机颗粒中的任一种。在微流通道网络中所分选的细胞的粒径范围大约为1μm至大约50μm。更通常的是,直径大约为100nm至大约100μm的细胞为用于通过在微流通道网络中的光学开关进行分选的候选物。

还有,已经采用激光器来产生出用在光学开关中的光束。当前用于光学开关的激光器为近IR连续波激光器,它已知在用来展示光学开关的功率密度和曝光时间下不会伤害生物细胞的存活性。针对不同的用途可以考虑可选的激光源,例如如果对颗粒的损害不是问题则考虑可见或近UV波长激光器,或者在可以使用较大光通量来使颗粒非常迅速运动的情况下考虑脉冲激光器。但是,虽然本发明的进一步说明使用了激光器来形成光学开关,但是激光束源不必局限于激光器。

附图说明

图1是微流通道网络的“Y”形分类交界处的平面视图;

图2是采用用主通道连接的鞘流箍紧交界处(sheath flow pinchjunction)和“Y”形分选交界处的微流通道网络的平面图,在流体中的细胞50/50的分离,统称为50/50光学开关网络;

图3是采用用主通道连接的鞘流箍紧交界处和“Y”形分选交界处的微流通道网络的平面图,通过不同的鞘流使流体中的细胞偏斜分离,统称为鞘流偏斜的光学开关网络,具有光学开关;

图4采用用主通道连接的鞘流箍紧交界处和“Y”形分选交界处的微流通道网络的平面图,通过不同的出口通道宽度使流体中的细胞偏斜分离,统称为出口流体偏斜的光学开关网络,具有光学开关。

[需要指出,在下面的图中使用基于文本的标签来代替基于数字的标签,但是在类似的图中,仍然使用图1-4的基于数字的标签]

图5是50/50光学开关网络,具有双向激光线光学开关。

图6是50/50光学开关网络,具有双向激光点光学开关。

图7是在具有多于两个出口通道的微流通道网络中的激光线光学开关的平面图。

图8显示了用于调制和/或关闭光学开关的可能的光学设计。

图9是鞘流偏斜的光学开关网络的平面图,具有激光点光学开关,该开关平行于细胞流或者与细胞流成一定角度地平移。

图10显示了用于细胞检测和触发器决定方法的检测器布局和使用一个激光源的时序/触发器图。

图11显示了用于细胞检测和触发器决定方法的检测器布局和使用两个激光源的时序/触发器图。

图12是在底部和顶部玻璃基板中的微流通道网络的光刻掩模的代表设计示意图,当这些基板粘接以形成一个网络的时候在主通道内提供了细胞流的二维鞘流箍紧。

图13三维显示了图12所述的设计。

图14是微流通道网络的侧视图,提供了沿着竖直方向然后是沿着水平方向的细胞流的顺序鞘流箍紧,导致在主通道内的细胞流的全二维鞘流箍紧。

图15是图14所述的微流通道网络的三维视图。

图16是用于底部和顶部玻璃基板的代表性光刻掩模设计的示意图,当所述基板连接在一起的时候形成图14和15所示的微流通道网络。

图17是用于完成微流通道网络的光刻掩模的代表性实施方案,具有通向出口的T-箍紧(T-pinch)交界处和T-分叉(T-bifuraction)交界处,以实施基于细胞分选方法的光学开关。

图18是用于完成微流通道网络的光刻掩模的代表性实施方案,具有通向出口通道的三角形-箍紧交界处和T-分叉交界处,以实施基于细胞分选方法的光学开关。

图19显示了在完成的微流细胞分选芯片中的微流通道网络的优选实施方案。

图20显示了用于基于微流通道网络细胞分选器的光学开关的独立(self-contained)的可丢弃盒的优选实施方案。

图21显示了用于基于微流通道网络细胞分选器的光学开关的光学系统的优选实施方案。

图22显示了用于光学开关的各种实施的基于微流通道网络细胞分选器的光学开关的代表性能。

具体实施方式

图1显示了光学开关10的一个实施方案,所述光学开关用于在1×2微流通道网络也就是具有一个主输入通道11和两个从分叉交界处延伸出来的输出通道12和13的网络中分选细胞。图1显示了用于分叉交界处的“Y”形图案,但是其他的分叉例如“T”形图案也可以采用。通常,这些微流通道在光学透明的基板上制造,以将光学开关和其他细胞检测光学元件投影到通道内。该基板通常但是不限于是玻璃、石英、塑料例如聚甲基丙烯酸甲酯(PMMA)等,以及其他可铸或者可加工的聚合物(例如聚二甲基硅氧烷、PDMS或者SU8)。微流通道的深度通常是但是不限于10μm至100μm的范围。微流通道的宽度通常是但是不限于深度的1至5倍。截面通常是矩形的,或者在通过玻璃基板光刻掩蔽然后各向同性蚀刻通道而制造微流通道的情况下具有四个圆角的矩形。

设定流动条件使得在光束(在该情况下是来自激光器的光束)被关闭或者阻挡而使光束不会照射到交界处区域的时候,所有的细胞优选流入到输出通道之一中,例如右侧输出通道13中。当打开光束或者不阻挡光束的时候,光束照射到交界处区域上,并且通过细胞与光束之间的相互作用产生的光学作用力将细胞导入到左侧输出通道12中。在该实施例中,选择用于引导细胞的光学图案是相对于流体流动方向成某个角度的激光照明的长细线。光学梯度作用力将细胞横向移动离开细胞的主流线,从而切换的细胞离开主通道进入到一个输出通道,例如12中,而来自细胞的主流的未切换的细胞进入到另一个输出通道,例如13中。通过直接驱动泵作用、气动泵作用、电动的、毛细作用、重力或者其他产生流体流的方式,可以实现微流通道内的流动条件的设定和控制。

就通过量(进入到分叉交界处顶部处的分选区域的细胞的瞬时速率)、产率(目标细胞在目标输出通道12中的比例)、以及纯度(目标细胞占目标输出通道12中的细胞总数量比例)而言,分选机构的性能受到多个因素的影响,每个因素影响光学开关的实施。光学开关的特征在于几个参数,例如投影到微流通道网络的分选交界处区域中的光学图案的形状,该图案相对于分叉交界处的位置,光学图案相对于其最初的位置和形状的任何运动,光学开关的启动持续时间,用于产生光学开关图案的激光源的波长和功率等。给光学开关选择的这些参数的特定值是在其他事情中的微流通道系统的拓扑学和几何学、微流系统中的流速(细胞速度)、控制在主通道内的细胞流的位置的能力(不论它们是在主通道的中央还是偏离至一侧流动)、实现可靠切换必须的细胞位移量、通道的深度、通道的形状、以及细胞与光学开关之间的相互作用所产生的作用力的临界函数。

通常,当细胞引入到主通道中的流中的时候,它们在流内的任何横向位置处向通道下方移动。因此,由于已知的在微流通道内的压力驱动的流的抛物线(对于圆柱形微流通道)或者准抛物线(对于更普通的截面)速度剖面,细胞以不同的速度移动,这取决于它们的横向位置。这使其难以将所有细胞的流偏向一个输出通道例如13,如图1所示。利用这种流的几何形状的光学开关的任何实现必须导致低的通过量,并且不能有效地利用可用于制造光学开关的激光能量。使用适当的流动条件可以有助于减少对光学开关的性能的这些限制。

可以通过多种方式来建立适当的流动条件。在一个实施方案中,利用图2所示的鞘流方法,通过夹紧细胞输入通道流20以及来自左侧21和右侧22的缓冲器附加流,将细胞一维聚焦(在所示的平面视图中沿着水平方向)到主通道中心内的一个行列中。通过使来自每一侧的流量相等来实现将这些细胞保持在主通道中心中。该流如图2所示一样有效地产生出流体分割面23,并且这最终导致流体和细胞在分叉交界处的50/50分割。采用这种微流通道设计和流动条件来实施用来从混合细胞群体中分选出目标细胞的光学开关需要这样一种光学开关,它主动地将目标细胞切换到一条输出通道即如图1所示的12,并且将非目标细胞切换到另一条输出通道,即13。

可选的是,通过将不相等的流投入进侧鞘流通道中将聚焦的细胞行设置成偏离主通道的中心,图3a-b。这有效地使得细胞从输入通道30歪斜地流向在主通道内的分割面33的一侧。细胞流歪斜流向的主通道的侧面与鞘流具有更高流速的侧面相对。也就是说,在右鞘缓冲液32比左鞘缓冲液31流得更迅速时,如图3a-b所示一样,细胞行朝着在主通道的液流左边歪斜。但是,左鞘流也可以具有更高的流量,这会将细胞行推向主通道的右侧。还有在图3a-b中显示出荧光检测器34和一光学开关35。荧光检测器用作用来确定所要分选的细胞的部件,并且将在后面作进一步说明。从图3b中可以看出,有效分选涉及使细胞从朝着荧光负性非目标细胞微流通道36离开分叉交界处的液流越过分割面运动进入朝着荧光正性目标细胞微流通道37离开分叉交界处的液流中。可以通过采用直接驱动泵送、气动泵送、电动、毛细作用、重力或其它手段来单独控制在相应侧通道中的流速以产生出液流或者通过小心平衡在每条微流通道中的压降以具体设计出微流鞘网络来确保出现中央流(50/50分割)或偏置流,从而实现控制鞘缓冲液流速。

用来实现所有细胞在荧光检测44之前从在主通道中的输入流40优先流进一条输出微流通道即荧光负性通道46中的可选方案在于采用相等额鞘缓冲液流速41和42来获得中央箍紧,但是然后优选通过让更大量的液流离开分叉交界处进入相对于荧光正性输出通道47的荧光负性输出通道46来将细胞流偏压进荧光负性通道。这在图4a-b中显示出,其中左边输出通道46比右边输出通道47更宽。该结构有效地将分割面43设置在位于中央的细胞流的右边。因此,在细胞处于所期望的位置中的情况下,然后使用光学开关45来使目标细胞越过分隔板移动进入目标细胞荧光正性右边输出通道。通过让右边输出通道比左边输出通道更宽使该方案同样有效,由此通过光学开关使目标细胞平移越过目前位于中央细胞流的左边的分割面,并且因此目标细胞被分选进左边输出通道中。因此,通过具体设计微流通道输出网络,或者通过积极控制在相应输出通道中的出口背压,从而可以控制细胞进入所期望的输出通道的流量。

中央流或偏置流的使用以及聚焦细胞流离流体分割面的相应距离最终决定了实现可靠切换所需的细胞的位移大小。这进一步决定了实现可靠切换所需的激光线的长度和激光器功率。细胞流离分割面越近,则所需的位移量就越短,并且分选过程变得越有效。为了提高所分选群体的纯度并且实现高通过量,在单向布置中的单个光学开关需要试样流与分割面偏置。这样,减小误分选的出现。

该设计的一个可选方案在于使用利用了两条激光线的双向光学开关。在该方案中,一条激光线将所期望的细胞分选到一条输出通道,并且另一条激光线将所有其它细胞分选进另一条输出通道。该方案可以供50/50(图2)或者偏置(图3和4)分割结构使用。在后面的情况中,在细胞没有处于切换区中时,人们可以选择将激光器留在其两个位置状态中的任一个,或者人们也可以在该期间关闭该激光器。也可以通过让两个镜像激光线设在正好位于分叉交界处上方的切换区域上来使该光学开关成为双向的,这些激光线单独地打开以将细胞引导至源自分叉交界的两个输出的任一个中。

在图5中显示出在1×2微流网络中采用激光线的双向光学开关的示意图。如图6所示,也可以用引导至该通道的任一侧上的激光点来实现类似的双向光学开关。至于单向光学开关,可以在双向光学开关中使用单个激光源,或者可选的是该双向光学开关可以使用两个单独的激光源。双向设计潜在地提供了优于单向设计的一些性能优点。第一个优点在于,因为每个细胞由激光引导,所以会提高纯度。第二个优点是,因为可以从两个输出端口的每一个中导出相等的流,而不是一些预定比例的流,所以简化了液流。

虽然迄今在该说明书中只考虑了具有通过一条输入主通道进入通向两条输出通道的分叉位置的流的1×2微流通道设计,但是也可以采用具有1×N或M×N输出的微流网络。通过具有任意多的单独调制激光线可以在这些更大的网络中实现光学切换。在图7a-c中显示出一些实施方案。另外,也可以将细胞多次回送穿过相同的分选器以提高分选纯度,或者可选的是,也可以将通道成级联布置以便进行多级分选。

当在单向或双向布置中操作该光学开关时可以考虑两种不同的促动模式:无源模式或有源模式。无源模式是这样的,光学开关的状态打开或关闭,而与什么细胞可以流经该通道无关。在该情况中,不需要知道细胞什么时候或者有多少正在进入切换区域,因此根据激光的状态,切换在切换区域内的所有细胞。可选的是,在有源模式中,在细胞进入检测/选择区域时,首先检测细胞,然后根据一些判断过程来切换。图3a-b和图4a-b显示出使用正好设置在切换区域之前的荧光检测器的这种模式的实施例。在该情况中,所有荧光细胞被引导至一条输出通道,并且所有非荧光细胞被引导至另一条输出通道。用于判断过程的其它非荧光检测/选择技术包括飞行时间法、散射法、成像法、电容法或任意能够识别出所期望的细胞的检测方法。与检测/选择方法无关,可以利用采用了有源模式的切换来根据一些判断过程将一种细胞群体从另一种分选出。

为了利用有源模式,必须响应于判断过程将光束调制打开或关闭。与所使用的激光数量或者该光学开关是单向或双向的无关,可以按照许多方式调制这些激光,包括使用光电调制器、调制激光功率、关闭激光器、使用液晶调制器、使用电流计、并且使用声光调制器。对于具有两个激光的双向光学开关,可以单独地打开和关闭单独的激光器;但是,在使用单个激光源时,可以通过使用偏振旋转器(例如液晶调制器)并且让两种不同线图案的每一个为两个单独偏振的每一个来实现光学开关线的两个不同取向。同样,可以使用声光调制器或电流计镜子来调制用作光学开关的单个点的位置或者可以使用双轴声光调制器或双轴电流计镜子来画出用作双向光学开关的两种不同线形状。

图8显示出用于进行光学开关的调制和/或关闭的三种不同可能的光学设计。在图8a中,从朝着液晶调制器(LCM)引导并且穿过它的单个光束(激光器)中产生出双向光学开关。该LCM为偏振旋转器,因此如果该光束沿着一个方向偏振,则它将笔直穿过偏振光束分光器(PBS),穿过产生出线形状的圆柱透镜,穿过另一个PBS,然后穿过一些用来将光线聚焦到微流切换区域上的聚焦光学元件。这有效地产生出用来将细胞切换进分叉通道输出中的一个的双向光学开关的一条线。为了将细胞切换进另一个输出通道,必须产生出镜像线。通过使用来改变光束的偏振的LCM旋转来实现这个情况。因此,在光束撞击第一PBS时,它被引导进交替通道,穿过不同的圆柱透镜(产生线形状),通过其它PBS,用来通过将镜像线聚焦到微流切换区域上的聚焦光学元件将光束引导回。要指出的是,圆柱透镜用来产生出用于双向光学开关的线形状;可选的是,可以拆除这些圆柱透镜,从而导致用于光学开关的点。在图8b中,没有使用LCM和PBS的组合,在有或没有圆柱透镜的情况下,可以使用声光调制器(AOM)来产生出用在双向光学开关中的线或点。这可以通过将AOM构成为获得所需的规定线形状来实现。还有,可以使用AOM来按照开/关方式调节光束,从而将光束引导至用于光学开关关闭状态的光束阻挡件。图8c显示出在图8a和图8b中所述的系统的组合。在采用AOM来改变光束方向的任意结构中,可以根据所期望的光束运动采用电流计镜子(单轴或双轴)来代替AOM。

在优化用于单向或双向光学开关的切换效率时可以考虑用于光学图案的许多变型。如上所述,已经采用了激光线作为光学开关图案。可以通过圆柱透镜、通过扫描电流计镜子或声光调制器、通过衍射光学元件、通过普通折射光学元件或者通过任意其它技术来产生出该线。到目前位置,已经采用了圆柱透镜、通过扫描电流计或者通过使用声光调制器来产生出该线。该线的长度可以任意长或者与单个点一样短。该线可以在线的顶部处具有更高的强度,并且朝着该线的端部其强度逐渐变小。另外,该线可以为曲线,这优化了细胞的输出方向。另外,该线的角度或线的形状可以实时变化(即,旋转以优化输出)。为了应用于多输出通道,可以产生出在2D空间中的任意随机图案以优化每个输出细胞的方向。可选的是,可以通过分散点阵列来产生出该线。

为了进一步改善分选机构在通过量、产出率和纯度方面的性能,该光学开关如此构成,从而激光点在它朝着分叉交界处沿着主通道留下时横靠所选细胞扫描,由此增大了在细胞和激光之间的总相互作用时间。该光学开关采用了这样一个激光点,它在笔直线中朝着分叉交界处沿着主通道长度向下移动。由该光电扫描的线可以与主通道的壁平行(图9a),或者可以相对于细胞液流成一些角度(图9b)。因此,该角度可以为0-90度。采用AOM或扫描电流计镜子来实现扫描该点的能力。通过根据采用荧光或其它能够识别出所期望的细胞的检测方法例如飞行时间法、散射法、成像法或电容法对所期望的细胞的检测进行判断来触发光学开关进行扫描。细胞位置可以在主通道中偏置或对中,这决定了由该点扫描的线的长度和用来实现有效切换/分选的激光功率。因此,在检测所期望的细胞时,打开光学开关,并且该点横靠所期望的细胞出现。该点然后横靠所选细胞跟踪,并且使用光学力来将所选细胞引导进所期望的输出通道。

下面描述了用来方便光学开关的有效触发的两种方案。两种方法中的典型一种是使用空间信号来分析运动细胞,并且使用该信息来产生切换或不切换的判断。该空间信号基本上为信号的量度或时间的函数,它可以产生出在峰值强度和峰值宽度方方面不同的空间指纹。该信号可以是荧光、散射(例如,向前散射)、电容、成像或任意能够识别出所期望的细胞的检测方式。一个方案在于使用与两个或多个检测器耦合的单个激光源来实现细胞检测和细胞识别。图10a-d显示出使用与一个荧光检测器和一个向前散射检测器组合的一个激光源的这个方案。来自这些检测器的空间信号用作用于开关判断的信息。通过向前散射信号来验证细胞的存在,并且在该信号与处于预定范围内的荧光信号强度耦合时;然后将该“选通”信息用于触发光学开关。要指出的是,只显示出单个荧光检测器,但是可以使用多个荧光检测器以进行更精细的细胞识别。在所述的情况中,通过使用等流速鞘缓冲液来使细胞流位于中央,并且使用具有不同宽度的输出通道来产生出通向细胞流右边的分割面。但是,可以采用如上所述用来操纵细胞流和分割面的位置的任意结构。还有,两种结构的共同之处在于存在误差检测检测器,这验证了细胞是否已经切换。在该情况中的检测可以基于荧光、散射(例如向前散射)、电容、成像或任意能够识别出所期望的细胞的检测方式。

图10a-b显示出在分选参数为负并且光学开关没有触发时的检测器布置和定时/触发图。细胞进入主流体通道并且通过从两侧流出的鞘缓冲液聚焦成单个纵列。在细胞通过在检测/选择区域中的激光时,同时或近乎同时地检测出荧光和向前散射信号。虽然通过向前散射信号(在时刻t1)成功地检测出细胞的存在,但是荧光信号低于选通水平,并且光学开关没有触发(在时刻t2)。因此,由于没有切换任何细胞,所以没有获得任何错误检测信号(在时刻t3)。可选的是,图10c-d显示出在分选参数为正并且光学开关被触发时检测器布置和定时/触发图。这里,在细胞通过在检测/选择区域中的激光时,同时或近乎同时地重新检测(在时刻t1)荧光和向前散射信号,但是荧光信号处于选通水平内,并且光学开关被触发(在时刻t2)。由于细胞被切换所以获得错误检测信号(在时刻t3)。在该方案中,触发时间(在时刻t2)为从初始检测时间(t1)测量出的预定值(Δt),并且通过细胞的速度和光学开关相对于检测/选择区域的位置来确定该Δt数值。该方法对于实现有效分选而言是令人满意的;但是作为用来进一步改善触发精度的手段,可以采用第二方案。

图11a-d显示出该第二方案,其中使用两个激光源来代替一个。还有,如同上述单激光方案的情况一样,来自这些检测器的空间信号用作用于切换判断的信息。一个激光器在检测区域中用来在识别/选择区域之前单独实现细胞检测。在该情况中的检测可以基于荧光、散射(例如向前散射)、电容、成像或任意能够识别出所期望的细胞的检测方式。第二激光器与两个或多个检测器连接,并且用来实现细胞检测和细胞识别。还有,在该情况中的识别可以基于荧光、散射(例如向前散射)、电容、成像或任意能够识别出所期望的细胞的检测方式。两个顺序细胞检测步骤的目的在于,可以从在第一检测(在时刻t1)和第二检测(在时刻t2)之间的时间差(Δt)中获得细胞流速。已知在检测器窗口(d)之间的间距将产生出流速(v=d/Δt),并且该数值与光学开关和识别窗口(x)之间的已知距离组合可以用来计算用于光学开关的触发时间(t3=x/v)。还有切换只是在到达特定选通水平时出现以进行细胞识别步骤。虽然只是显示出单个荧光检测器用于识别,但是可以使用多个荧光检测器。在所述的情况中,通过使等流速鞘缓冲液来使细胞流位于中间,并且使用具有不同宽度的输出通道来产生出通向细胞流右边的分割面。但是,可以采用如上所述任何用来操纵细胞流和分割面位置的结构。还有,这两种结构的共同之处在于存储错误检测检测器,它用来验证细胞是否已经被切换。在该情况中的检测可以基于荧光、散射(例如向前散射)、电容、成像或任意能够识别出所期望的细胞的检测方式。

图11a-b显示出在分选参数为负并且光学开关没有触发时的检测器布置和定时/触发图。细胞进入主流体通道并且通过来自两侧的鞘缓冲液流动聚集成单个纵列。在细胞经过检测窗口区域时通过向前散射信号(在时刻t1)验证细胞的存在。在细胞穿过识别/选择窗口时,获得第二向前散射信号(在时刻t2),但是该信号与没有处于选通水平内的荧光信号强度(在时刻t2)接合,并且光学开关没有被触发(在时刻t3)。由于没有切换任何细胞,所以没有获得任何错误检测信号(在时刻t4)。即使在没有分选细胞的情况下,采用(t1)、(t2)和在检测和识别窗口之间的已知距离(d)获得细胞流的流速。这是采用关系式:Δt=(t2)-(t1)和v=d/Δt来获得的。

可选的是,图11c-d显示出在分选参数为正并且光学开关被触发时的检测器部分和定时/触发图。在细胞经过检测窗口区域时由向前散射信号再次验证细胞的存在(在时刻t1)。在细胞经过识别/选择窗口时,获得第二向前散射信号(在时刻t2),并且该信号与处于选通水平内的荧光信号强度(在时刻t2)接合(couple with),并且触发光学开关(在时刻t3)。由于切换一个细胞,所以现在获得错误检测信号(在时刻t4)。在该方案中,触发时间(t3)不是预定数值,而是采用细胞流流速(v)和在检测和识别窗口之间的已知距离(d)获得的。这是采用关系式:Δt=(t2)-(t1);v=d/Δt;(t3)=x/v来获得的。该方案由于能够解释在细胞流速中的波动所以能够进行更有效的分选,因此更精确地触发光学开关。对于每个单独细胞而言,该方案的额外效果是可以调节激光点沿着通道向下平移的速度,从而它与如上所述的细胞速度相匹配,因此增大了在细胞和光学开关的激光点之间的相互作用时间。通过改变用于AOM的驱动器来改变激光点的平移速度。

在结合上述触发方案的同时改善分选效率的另一种方案在于,采用用来产生真实试样芯的通道设计使细胞集中在主通道中,由此该芯部完全由鞘缓冲液包围。细胞沿着通道高度的位置变化性能够引起细胞检测和荧光强度的变化。确保细胞处于在主通道的中央部分中流动的芯部中可以改善分选效率,因为这减小了由于细胞的径向分布而出现的任何变化,并且控制了细胞为了进行有效分选而需要运动的距离。可以采用用鞘缓冲液2维箍紧输入液流来实现这种芯部流。

该方案需要底部基底和顶部基底;每个具有形成在它们中的微流通道网络。图12a-b和图13显示出用来实现这个的一个方法,其中在一个基底上的通道结构为在另一个基底上的结构的镜像。因此,在使这两个基底合在一起并且通道结构彼此面对时,这些通道网络重叠并且形成完整的流体通道。图12a-b显示出用在该方案中的一种结构,其中用虚线显示出试样通道。该方案的关键特征在于确保试样通道壁鞘通道更窄,从而在基底合在一起时,试样通道看起来作为孔进入交界处。这显示在图13中,其中可以看到细胞进入交界处,然后从所有侧面被箍紧,从而形成在主通道的中央流动的试样芯部。要指出的是,可以通过湿法化学蚀刻或激光蚀刻玻璃或石英通过在塑料或聚合物中模制或压花来形成这些通道。

另一种方法涉及具有一系列如此布置的相交通道,从而在第一交界处/相交部分处,这些细胞被垂直推向主通道的一个壁,下一个交界处/相交部分将该细胞流垂直压进主通道的中央,然后在第三交界处/相交部分处从两侧的最终箍紧流产生出包围着沿着主通道流动的试样芯部的完整鞘缓冲液笼罩(shroud)。这在图14和图15中显示出,并且在图16中示意性地显示出一条可能的通道。在该实施例中,在交界处(A),试样从顶部基底流进交界处,并且向下流进在底部基底中的通道,在那里侧鞘缓冲液流从侧面流进交界处。该试样在它继续流向下一个交界处(B)时被稍微聚集并且推向底部通道的顶壁。在交界处(B),试样沿着底部通道的顶部从交界处A流向交界处(B)。这里,第二鞘缓冲液从顶部基底流进交界处(B),并且试样被向下推向在底部基底中的通道中间。该试样继续沿着底部通道中间部分朝着下一个交界处(C)流动。这里,第三鞘缓冲液从两侧流进交界处(C),并且该试样被箍紧成单个纵列。该试样在它继续流动时由鞘缓冲液包围成一试样芯部,它在主输入通道内水平并且垂直对中。

采用传统的光刻掩模和各向同性蚀刻覆有掩模的玻璃基底在玻璃基底中产生出在图1-16中所述的所有微流通道网络结构。该各向同性蚀刻通常生成出这样的微流通道,它在通道中央处具有一深度de并且在通道的顶部处具有一宽度w=wp+2×de,其中wp为限定该通道的光刻图案的宽度。由于各向同性蚀刻,所以通道的底部形状在每个边缘处为具有半径为de的四分之一圆形状,并且所蚀刻出的通道的顶部打开。将玻璃基底通常为玻璃盖片热粘接在具有蚀刻出的微流通道的基底上,以密封通道的顶部并且完成一微流通道网络。通常在热粘接之前在顶部基底中钻出孔以提供用于流体流进入和离开微流通道网络的路径。这些通道的深度de取决于化学蚀刻过程的速度和蚀刻步骤的持续时间。微流通道的深度通常为但不限于10μm至100μm。微流通道的宽度通常为但不限于深度的2至5倍。这是通过采用通常为但不限于5μm至400μm的在光刻掩模上的线条来实现的。如前面所述一样,可以采用其它基底例如塑料或可模制或可铸聚合物。在这些情况中,微流通道通常具有矩形横截面,但是也可以与在玻璃基底中的通道类似。其中形成微流通道网络的玻璃基底的尺寸通常为但不限于5mm×5mm至25mm×50mm,并且其总厚度为但不限于500μm至2mm。顶部基底通常具有相同尺寸,并且其厚度为但不限于300μm至1mm。这些通路其直径通常为但不限于200μm至600μm。所完成的具有微流通道网络和带有用于流体流进出的流体口的通路的粘接盖板的基底被简称为微流分选芯片或芯片。

在图1-16中显示出的微流通道网络通常只是描述了入口微流通道、鞘缓冲液箍紧交界处通道、细胞识别和光学开关主通道以及主通道分叉成出口通道的局部几何形状。该说明需要扩展以提供给在每个通道中的区域,以便形成与在提供了与上述通路的界面的宏观流体装置或盒子中的容器的连接,从而使流体流进入以及离开网络。这些微流通道的每一个的横截面和长度通常需要根据选择用来实现在这些通道中的液流的技术进行调节,以确保在整个微流通道网络内的适当受控的液流。这些通道的横截面和长度都由用来形成光刻掩模的图案确定。

图17显示出用于一个完整微流通道网络的掩模的一个实施方案,该微流通道网络具有一入口通道,两个通向T箍紧交界处的两条鞘通道和来自T分叉交界处的两条出口通道。该掩模设计成提供7∶1的体积箍紧比(鞘流速为细胞入口流速的七倍)。这些通道的长度设计成提供足够的压降以使得能够使用标准低流量注射泵或低压气动控制器来建立起液流。该设计也反映出能够只是使用两个泵所需的压力平衡,一个压力用于细胞入口通道并且一个用于两个鞘通道,并且这些出口保持在大气压下。鞘通道入口处于在该结构顶部出的终端处,细胞入口通道在两个鞘通道的中央部分中在这下面开始,并且足够长以提供设定7∶1的箍紧比的适当压降,并且两个出口位于在底部左右处的端部处。

图18显示出在提供了10∶1体积箍紧比的结构中结合了用于箍紧分界处和Y分叉分界处的三角形分界处的另一个实施方案。另外,该结构其几何形状与图17的类似。显然可以有许多其它设计,但是它们都共享了需要提供流体进入和离开并且为选择用来建立流体流的方法提供适当的压降和压力平衡的共同特征。采用类似的设计条件来生产出用来制作用于前面所述的2维箍紧流网络的微流通道网络的光刻掩模。

图19显示出在所完成的微流分选芯片中的微流通道网络的一优选实施方案。两个入口,用于细胞试样流和用于鞘缓冲液流,两个出口用于荧光正目标细胞和用于荧光负非目标细胞,废流。芯片为24mm×40mm。蚀刻基底的厚度为1.1mm。粘接盖板的厚度为550μm。微流通道深为50μm。细胞入口微流通道宽为110μm。外鞘流和出口微流通道与主微流通道一样宽为150μm。鞘流箍紧交界处为倒置的等边三角形,每个边长为300μm,在交界处的顶部处通过三角形的底边连接细胞入口通道,并且在交界处的底部处两条鞘流箍紧通道从每个侧边通过三角形的顶端通向主通道。优化该微流通道网络结构,从而在所有四个端口处采用液流的气动控制来建立网络流。

与芯片的微流连接部分可以按照各种方式制成。一种方法是使用通过胶粘或采用各种可以在端口处安装在芯片表面上的管接头直接连接在端口上的柔性微流管道。该管道可以直接连接在注射泵或类似系统上,这提供了用于处理细胞试样和鞘缓冲液的体积并且提供了使这些体积流经该芯片的压力。使用注射泵来处理试样体积需要针对每个试样清洁和重新装载该泵,并且引起出现从一个试样到另一个试样的转移或污染的可能性。

用于与芯片微流连接的一种改进方法利用了采用可UV固化粘接剂、PSA粘接片或其它传统的粘接方法直接粘接在芯片上的盒子。该盒子具有四个内置容器,它们分开提供了与细胞入口通道、两个外鞘通道(来自一个容器)和两个出口通道的每一个的界面连接。这个盒子提供了无菌操作细胞试样和分选目标细胞以及废流的可能性,因为它们能够在细胞分选之前和之后完全局限在该盒子的体积内。可以通过使用两个气压控制器来提供用于这种盒子和芯片系统的流体流,这些控制器单独加压细胞入口和鞘缓冲液容器,从而将穿过芯片的微流通道网络的流体流导入到处于大气压下的出口容器。

通过使用四个单独对细胞入口、外鞘缓冲液、目标细胞收集和废料收集容器的每一个加压的气动控制器来提供改进的流体流控制方法。这种流体流控制系统能够单独调节在外鞘箍紧交界处的体积箍紧比、在用于荧光分析和光学开关的主微流通道中的细胞流速以及在切换分叉处的分割比,从而形成如前面所述一样的偏置流。

图20显示出一自备一次性盒子的优选实施方案,它提供了分别用于细胞试样体积、外鞘缓冲液体积和用于目标细胞和废料的两个出口筹集体积的流体容器。该盒子由丙烯酸塑料制成,并且可以被机加工出或铸造出。适当的话,可以采用其它塑料或合适材料来代替丙烯酸材料。细胞试样体积通常形状为锥形,它从端口朝着入口微流通道逐渐变细。在该优选实施方案中,入口容器包含有一聚丙烯插入件,用来减小细胞附着,因此增大细胞产出。该芯片用UV粘接剂粘接在光学窗口区域上,并且来自该芯片的出口与其相应的容器体积邻接。这些容器体积用搭锁盖子密封,该盖子具有在气动控制器和各个容器之间连接的钻孔。该盖子包含有硅橡胶垫圈,以帮助密封在盒体上。它还结合有0.1μm聚丙烯过滤器以在盒体积和外部环境之间形成气密不透液界面。这保持了在盒子上的无菌条件,并且减少了对用户或仪器的生物毒害性污染。

通过首先使用具有Luer接头的普通注射器用外鞘缓冲溶液通过外鞘端口将微流通道网络准备好(prime)来使该盒子准备用于细胞分选工作。这样,将这些通道准备好并且外鞘容器填充有800μl,并且每个出口容器填充有200μl。从这些细胞试样容器中将多余的缓冲液体抽出,然后使用移液管将5-25μl的细胞试样放置到试样输入容器中。然后将盒子盖搭锁到适当位置中,从而提供了在其中进行细胞分选工作的独立系统。

该盒子设计成安放在一支架中,该支架使芯片的主通道如此定位,从而用来将光学开关光束投射到通道中的光学成像系统适当地对准并且聚集到通道中。盒支架还包括一压力歧管板,它具有四个通过外部管道与四个气动控制器连接的端口。每个歧管端口用O形环密封在其相应的盒盖端口上,并且通过用凸轮锁紧机构将歧管压在盒盖上来使这些密封件不漏。

在图21中显示出用于光学开关的光学系统的一优选实施方案。具有与搭锁盖子连接的气动歧管的盒子如此定位,从而光学开关区域位于从盒子上方看的透镜系统盒和从下方看的透镜系统的焦点处。来自488nm激光器的输出光束通过成像系统投射到正好位于分选区域上游的主通道中,如在图3-7和9-11中所示一样,以提供用于检测来自荧光正目标细胞的荧光的刺激。通过相同的透镜收集荧光发射,并且通过分色镜和适当的荧光发射过滤器将它成像到光电倍增器管上。来自光电倍增器管的信号由电子器件处理以测量出来自细胞的荧光的水平并且确定出在主通道中的流体流中荧光正目标细胞的存在。荧光激发不限于488nm波长,而是可以在适用于用来识别目标细胞的荧光基团的任意波长下。如果采用不同的激发照明,必须因此改变荧光发射过滤器的波长。在识别出荧光正性细胞时,电子器件触发AOM以将来自IR激光器的光束通常为在5W至20W输出功率之间的1070nm激光操作导入进在光学开关位置处的主通道。在该优选实施方案中,控制AOM产生出如在图9b中所述的光学开关图案,但是可以实施前面所述的光学开关方法的任一种。在盒子下面的透镜将488nm激发照明成像到光电二极管上。由该光电二极管检测到的信号用来帮助使荧光标记的细胞与可能带有荧光标记的更小碎片区分开,并且还用来识别出可能已经形成的细胞群。这些事件被拒绝作为用于分选到目标输出通道的候选物。

还有一个优选实施方案将采用有适当的成像和光学过滤以根据由用来激发出荧光的488nm激光器对细胞的照明提供向前散射的信号。这些光学器件将提供一个角度敏感范围,例如但不限于0.8°至10°,以便检测向前散射信号。除了荧光信号之外,该信号可以帮助表征细胞,以及帮助使细胞与碎片区分开。向前散射照明不限于荧光激发激光,而是可以在由适当地成像进主通道中的附加光源提供的任意其它波长下。

还有一个优选实施方案将采用有通常采用单个激发波长例如但不限于488nm的附加荧光检测通道,它们对在不同波长下的荧光发射敏感。每个检测通道将结合有一PMT,它具有适当的分色镜和用于附加荧光团的荧光发射波长的发射过滤器。二至四个荧光检测通道适合于这种方式。按照这种方式使用多于一个的荧光团能够针对多个检测标准利用光学开关识别用于分选的目标细胞。

还有一个优选实施方案将采用提供光学照明的错误检测能力,所述光学照明通常作为穿过网络中的通道之一的窄线,并且通常是在来自固态激光器的较长的波长,可能是但是不限于785nm,这种波长在用于荧光检测和向前散射检测的波长范围之外,但是比通常在1070nm的光学开关波长短。这种光源可以适当地成像在微流通道网络中,以提供可以用于检测颗粒通过网络中的任何竖直平面的通过的线。这样还能够检测光学开关性能,并还能够将光学开关的触发定时,如图11所示。

光学系统的另一个优选实施方案将采用在750nm但是不限于750nm的附加光学照明通路,例如通过将来自LED的光带通滤波并用该光照射在微流通道区域而产生。该区域可以通过750nm的带通过滤器成像到CCD摄像机上以使在分叉交界处/或在箍紧交界处在微流通道网络中的细胞流的性能可视化。摄像机前面的过滤器将适合于阻挡与荧光的激发或检测有关和与向前/侧面散射光学元件和错误检测光学元件有关的任何较短波长辐射。过滤器还阻挡来自光学开关的较长波长,1070nm光。

图20所示的盒的优选实施方案被设计为将微流通道网络保持在水平构造中,从而所有的通道和入口/出口处于同一个竖直水平上。这样使得重力对通过微流通道的压力下降的影响最小,导致网络中的更稳定和可控的流动。但是重力仍然对在液流中的细胞有作用,特别是在细胞从细胞试样容器经过到细胞入口微流通道内的时候。为了帮助控制重力对在该容器内的细胞沉降的影响,和帮助控制对它们在细胞流在箍紧交界处加速之前在入口微流通道中的较慢液流中的沉降的影响,分选器的另一个优选实施方案是增加细胞的浮力,从而可以使细胞的沉降最小。通过利用试样缓冲液中的添加物可以实现浮力的增加。这些流变学控制添加剂、尤其是那些是拟塑性或者剪切减小或者两者都是的添加剂的示例是黄原酸胶、卡拉胶、羧甲基纤维素钠盐、甲基纤维素、羟丙基甲基纤维素、羟乙基纤维素、羟丙基纤维素、羟丙基瓜尔、阿拉伯树胶、黄蓍树胶、藻朊酸盐、聚丙烯酸酯、卡波姆。其它的添加剂包括HistopaqueTM,它是聚蔗糖和泛影葡胺钠的混合物,以及OptiprepTM,它是碘克沙醇的60%的w/v的水溶液。所使用的这些添加剂的浓度取决于要分选的细胞的密度。例如,在使用OptiprepTM的情况下,浓度范围是5%至40%。最后,也可以利用试样缓冲液的盐度和蔗糖的添加来调整细胞的浮力。

用于细胞试样容量的和用于鞘流的缓冲液可以是与被分选的细胞具有生物兼容性并且与用于荧光检测模态和用于光学开关的光学照明兼容的任何缓冲液,也就是该缓冲液在荧光激发/检测波长和光学开光波长处具有足够低的吸收率。鞘缓冲液的优选实施方案使用PBS/BSA,pH为7.2的磷酸缓冲液生理盐液(PBS)和1%的牛血清清蛋白(BSA)(占5%)。细胞缓冲液的优选实施方案使用PBS/BSA以及14.5%的Optirep用于活的细胞试样和27%的Optiprep用于各种福尔马林固定的细胞试样。

如前所述,微流通道网络中的细胞分选的光学开关方法的性能用通过量、纯度和分选的恢复性来评估。图20所示的盒被优化,以允许测量性能,因为它由丙烯酸制成,目标和废物收集容器的底部是透明的,分选到这些容器内的细胞可以用一个倒荧光显微镜对数量和荧光标记进行量化。对图3-11所述的集中切换构造进行评估。利用活的Hela∶Hela GFP细胞的50∶50混合物来进行评估,所述混合物用1或者2面的静态激光点或者0°或8°的1面的激光扫描来进行分选。激光按照240Hz进行扫描。对于所有的开关模式,激光开启时间是4毫秒,激光功率是20W。对于扫描点方法,将聚焦的IR激光点沿着主通道大约平移70μm。

如图22所示,如图6所述的利用激光点的双向光学开关对于目标∶非目标细胞的50∶50的混合物在高达50细胞/秒的通过量的情况下对于纯度和恢复性具有良好的结果。但是在较低的亚群体浓度(数据未显示),不能有效的利用激光功率来切换非目标细胞,在较高的细胞通过率时重合误差提高。另外,没有切换的小颗粒会污染目标容器。

图22也显示了如图9所示的利用静态激光点或者沿着液流方向与液流平行或者成一个小角度平移的点的1面的切换方法的性能。试样芯部流被偏置向废物出口,从而在默认没有光学开关的时候,所有的细胞都流向废物。这两种方法如图所示具有改进的性能。这两种方法的性能交叉的这一事实暗示光学开关的触发不是最佳的,并暗示图10和11所示的光学开关的有源触发会改善性能。

附录

1.H.M.Shapiro,Practical flow cytometry,Wiley-Liss,New York,2003.

2.Y.Fu,C.Spence,A.Scherer,F.H.Amold and S.R.A.Quake,“Microfabricatedfluorescence-activated cell sorter,”Nat.Biotechnol.17,pp.1109-1111,1999.

3.Y.Fu,H.-P.Chou,C.Spence,F.H.Arnold,and S.R.Quake,“An integratedmicrofabricated cell sorter,”Anal.Chem.74,pp.2451-2457,2002.

4.Wolff,I.R.Perch-Nielsen,U.D.Larsen,P.Friis,G.Goranovic,C.R.Poulsen,J.P.Kutter and P.Telleman,“Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter,”Lab Chip 3,pp.22-27,2003

5.Li,P.C.H.& Harrison,D.J.Transport,manipulation,and reaction of biological cellson-chip using electrokinetic effects.Anal.Chem.69,1564-1568(1997).

6.Dittrich,P.S.& Schwille,P.An integrated microfluidic system for reaction,high-sensitivity detection,and sorting of fluorescent cells and particles.Anal.Chem.75,5767-5774(2003).

7.Fiedler,S.,Shirley,S.G.,Schnelle,T.& Fuhr,G.Dielectrophoretic sorting ofparticles and cells in a microsystem.Anal.Chem.70,1909-1915(1998).

8.Y.Huang,K.L.Ewalt,M.Tirado,R.Haigis,A.Forster,D.Ackley,M.J.Heller,J.P.O′Connell,M.T.Krihak,“Electric manipulation of bioparticles and macromoleculeson microfabricated electrodes,”Anal.Chem.73,pp.1549-1559,2001.

9.M.Durr,J.Kentsch,T.Muller,T.Schnelle and M.Stelzle,“Microdevices formanipulation and accumulation of micro-aud nanoparticles by dielectrophoresis”Electrophoresis 24,pp.722-731,2003.

10.T.N.Buican,M.J.Smyth,H.A.Crissman,G.C.Salzrnan,C.C.Stewart and J.C.Martin,“Automated single-cell manipulation and sorting by light trapping,”Appl.Opt.26,pp.5311-5316,1987.

去获取专利,查看全文>

相似文献

  • 专利
  • 中文文献
  • 外文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号