首页> 外文OA文献 >Heat Kernel Based Local Binary Pattern for Face Representation
【2h】

Heat Kernel Based Local Binary Pattern for Face Representation

机译:基于热核的局部二值模式用于人脸表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Face classification has recently become a very hot research topic in computer vision and multimedia information processing. It has many potential applications, in which face representation is the most fundamental task. Most existing face representation methods perform poorly in capturing the intrinsic structural information of face appearance. To address this problem, we propose a novel multiscale heat kernel based face representation, for heat kernels perform well in characterizing the topological structural information of face appearance. Further, the local binary pattern (LBP) descriptor is incorporated into the multiscale heat kernel face representation for the purpose of capturing texture information of face appearance. As a result, we have the heat kernel based local binary pattern (HKLBP) descriptor. Finally, a Support Vector Machine (SVM) classifier is learned in the HKLBP feature space for face classification. Experimental results demonstrate the effectiveness and superiority of our face classification framework.
机译:人脸分类最近已成为计算机视觉和多媒体信息处理中非常热门的研究主题。它具有许多潜在的应用程序,其中人脸代表是最基本的任务。现有的大多数面部表示方法在捕获面部外观的固有结构信息方面表现不佳。为了解决这个问题,我们提出了一种新颖的基于多尺度热核的人脸表示,因为热核在表征人脸外观的拓扑结构信息方面表现良好。此外,为了捕获面部外观的纹理信息,将局部二进制模式(LBP)描述符并入多尺度热核面部表示中。结果,我们有了基于热核的局部二进制模式(HKLBP)描述符。最后,在HKLBP特征空间中学习了支持向量机(SVM)分类器,用于人脸分类。实验结果证明了我们人脸分类框架的有效性和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号